
There’s an App (Update) for That

Understanding Product Updating Under Digitization∗

Benjamin T. Leyden

Dyson School of Applied Economics and Management

Cornell University

leyden@cornell.edu †

April 11, 2022

The latest version of this paper is available at benleyden.com/app-updating.

Abstract

The digitization of consumer goods gives firms the ability to monetize and update already
purchased products, changing firms’ product innovation incentives. I develop and estimate a
structural model of the smartphone application (app) industry to study how the availability of
these tools affects the frequency and content of product updates. Using data from Apple’s mobile
platform, I employ natural language processing and machine learning techniques to classify
product updates and define precise categorical markets. I find that the availability of these
tools via digitization generally result in an increase in the frequency of product updates, and,
in particular, an increase in the relative frequency of major, feature-adding updates compared
to more minor, incremental updates. These results show that the manner in which product
digitization changes firms’ product innovation incentives has a significant effect on firm behavior,
and should be accounted for in future research on digital and digitizing industries.

JEL Classifications: L13, L15, L86, O30
Keywords: Product innovation, endogenous product characteristics, dynamic oligopoly, soft-
ware, digitization

∗Portions of this paper were previously circulated under the title “Consumer Preferences for Product Updates
Under Digitization: A Model of Demand for Smartphone Applications.”

†I am grateful for guidance from Simon Anderson, Federico Ciliberto, Gaurab Aryal, and many other faculty
members and students at the University of Virginia. This work has benefited from comments at IIOC 2017 & 2018,
the 2017 ZEW/MaCCI Conference on Innovation and Patenting, the 2017 Searle Center Conference on Internet
Commerce and Innovation, EARIE 2017, and NABE TEC 2018, the HBS Strategy unit, and the NBER Economics
of Digitization spring 2019 meeting. I am indebted to the app developers who have spoken with me about their
industry, and, in a some cases, provided data that have been essential to this project. I acknowledge the Bankard
Fund for Political Economy and the Radulovacki Summer Research Fund for financial support. All errors are my
own.

mailto:leyden@cornell.edu
https://benleyden.com/app-updating

1 Introduction

“It’s about post-purchase monetization of the TV...

we’re continuing to invest in those older TVs to

bring them up to feature level comparison with the

new TVs... and the reason why we do that is there

are ways to monetize that TV.”

— Bill Baxter, CTO, Vizio1

Consumer goods are becoming increasingly software-dependent and internet-connected. This

digitization of consumer goods changes the incentives firms face regarding when and how to engage

in product innovation. This is because digitization has the potential to extend the interaction

between consumers and firms, which has typically ended at the point of sale, by providing firms

with two new strategic tools. First, under digitization, firms are able to monetize the use of their

products, for example, by including advertisements in the product or by selling additional, instantly

available features to consumers. Second, the digital nature of these products makes it possible for

firms to update a product after the consumer has purchased it. Together, these two changes—the

ability to monetize the use of a product, and the ability to update a product past the point of

sale—have the potential to change how firms choose to innovate their products.

I study how the availability of use monetization and post-purchase updating via digitization

affects product innovation. Specifically, I consider whether product updates are more or less fre-

quent, and how the content of updates changes when firms have access to these tools. I answer

these questions through an empirical analysis of consumer and firm behavior in the context of

smartphone application (app) markets on Apple’s App Store marketplace.

The digitization of consumer durable good industries is rapidly accelerating. Of particular note

is a growing collection of home appliances and gadgets often referred to as the “Internet of Things,”

due to their incorporation and reliance on internet-connected software. Digitization is also evident

in the car industry, where electronic car manufacturer Tesla has repeatedly released downloadable

updates that increase the quality and functionality of their vehicles. For example, in January of

2015, Tesla released an update that increased acceleration rate of their model P85D car, and in

June of 2017, they released an update that improved the semi-autonomous driving capabilities of

1Patel (2019)

2

Tesla cars (Matthews, 2015; Lambert, 2017). It is anticipated that many more product categories

will become increasingly digitized in the coming years.

Apps are an extreme case of a digitized durable good as they are fully digital. This provides

a unique opportunity to study the effects of the changes brought on by digitization without facing

additional modeling and empirical challenges brought forth by the specifics of a particular indus-

try’s non-digital production costs and technologies. And, while software has always been a digital

product, the modern app industry differs from the more traditional consumer software developed

over the last few decades. Modern apps have undergone a process of digitization, as defined in

this paper, similar to many other durable good industries. Software, especially on mobile devices,

is now nearly always connected to the internet, and with the increase in the speed and ubiquity

of the internet, modern app developers are able to take advantage of the changes of digitization

as defined above. To be clear, no single characteristic of the modern app industry is completely

new, but rather, it is the confluence of these changes that distinguishes modern app stores from

traditional software.

Additionally, app markets are an interesting industry in their own right. Modern app markets

began in 2008 with the introduction of Apple’s App Store, which was quickly followed by Google’s

Android Market, a precursor to what is now called Google Play.2 The number of apps in the App

Store has ballooned from 500 in 2008 to over two million, and, according to Apple, apps have been

downloaded from the App Store over 130 billion times, resulting in over $100 billion in revenue

(Apple, 2016, 2017).3

I approach the question of how the introduction of use monetization and post-purchase updat-

ing to consumer goods via digitization has affected firms’ product innovation, or product updating,

behavior through the lens of competition in durable goods. Digitization has the potential to change

how firms compete by shifting a firm’s focus from encouraging consumers to replace existing prod-

ucts toward encouraging consumers to continue to use existing products. In the standard durable

goods model, a firm competes first against other firms to make a sale, and then against itself, as

firms update their products in order to get the consumer to purchase a replacement product. A

risk associated with this second aspect of competition is that if a consumer returns to the store,

2Henceforth, any mention of the “App Store” is a reference to Apple’s app marketplace.
3In a mid-2017 press release, Apple announced that nearly $70 billion had been given to developers (Apple, 2017).

As noted in Section 2, developers keep 70% of the revenue their app collects.

3

that consumer may switch to a competitor’s product. The digitization of consumer goods shifts

the emphasis in this game away from trying to push the consumer back to the store, and instead

toward trying to keep the consumer engaged with their current product through product updates,

while earning a continued revenue stream through various forms of use monetization.

The question of how digitization affects the frequency and content of product updates is an

inherently empirical one. It is theoretically ambiguous whether the ability to monetize the use

of a product and to update a product after the point of sale will lead to increased or decreased

updating, as the effect depends on the relative response to updates by potential new purchasers

and by previous purchasers choosing whether or not to use the product. For example, Foerderer

and Heinzl (2017) find that while updates increase demand, existing users tend to react negatively

(as measured by consumer reviews) to updates. This might result in less frequent updating, to

the extent that apps rely on advertising or other use-based sources of revenue. Furthermore, it

is also unclear how the content of updates will change as a result of digitization. If consumers

are relatively responsive to updates, but not to the content of those updates, firms might tend

to produce more frequent but lower quality updates. On the other hand, if consumer behavior is

particularly attuned to the content of product updates, firms may instead offer less frequent, but

higher quality updates.

With this framework in mind, I develop and estimate a structural model of the demand for

apps and of developers’ dynamic product updating decisions. On the demand side, I make a

distinction between the extensive margin—consumers choosing to buy new apps—and the intensive

margin—consumers choosing whether to use their already owned apps. In the model, consumers

consider the expected future value of owning an app when making extensive-margin, purchase

decisions. On the intensive margin, consumers make period-by-period decisions of whether to use

their already-purchased apps or not. Using the model of extensive-margin demand, I estimate

consumers’ preferences over app updates.

This paper differs from other recent empirical work on the demand for durable goods as it

allows for quality changes to an existing product. That is, instead of modeling consumers’ dynamic

product switching decisions, as in Gowrisankaran and Rysman (2007), I model consumers’ purchase

decisions in light of their expectations over future product updates and the associated future utility

they will receive. In my model, the inherent quality or characteristics of a product change following

4

its developer’s decision to update, unlike, for example, in Lee (2013)’s model of demand for video

game software, where a product’s inherent quality is fixed, and period-to-period changes in the

lifetime expected utility of a purchase occur only as a result of changes in the composition of

available products and temporal preference changes.

On the supply side, I model developers’ dynamic product updating decisions. Developers choose

each period whether, and if so, how, to update their app while considering the impact an update

will have on future demand and on the behavior of their market-level competitors. Using this

model I estimate the fixed costs of producing small, bug-fixing updates, and larger, feature-adding

updates. I then conduct a counterfactual analysis in which I “turn off” the digital aspects of the

industry and simulate developers’ updating decisions. By comparing developers’ updating decisions

without use monetization and post-purchase updating to observed behavior, I am able to estimate

the extent to which digitization has changed developers’ updating behaviors, both in terms of the

frequency and content of updates.

This work contributes to a growing literature on endogenous product characteristics. While

much of this work has focused on static models (see, e.g., Eizenberg (2014); Fan (2013)), there

has been some work on dynamic endogenous product characteristic decisions, including Goettler

and Gordon (2011), who model innovation in the CPU manufacturing industry, and Sweeting

(2013). Sweeting (2013)’s model of radio station format changes is closely related to this model

developed in this paper. As in this paper, Sweeting estimates a dynamic model of firms making

discrete choices from a menu of options. Additionally, in both cases, firms face somewhat atypical

profit functions, where marginal costs are zero and revenue does not result (at least entirely) from

consumers’ purchase behavior. Unlike Sweeting (2013), though, consumers in my model exhibit

forward-looking behavior.

To conduct my analysis, I have created a dataset on the universe of apps on Apple’s mobile

platform. For both economic and computational reasons, I focus my analysis on a subset of apps in

the Productivity category of the App Store, which consists of note-taking apps, task-management

apps, and virtual private network apps, among other categories.4 This data has been collected from

4One reason for focusing on Productivity apps is that many other categories are largely made up of companion
apps, which exist only to complement other products or services. By studying Productivity apps I am able to focus
my attention on apps where the app itself is the product, and thus where we would expect to see profit-maximizing
behavior from the developers. See Appendix A for a more detailed discussion of this point.

5

a variety of sources, and includes publicly available information from the App Store, and, in some

cases, proprietary sales and revenue data has been collected directly from app developers.

While the app industry is a data-rich environment, much of the information on apps is in the

form of unstructured text. This paper contributes to a growing body of work that integrates text

data into economic analysis.5 In particular, I observe text descriptions of every app and every app

update. I use machine learning (ML) and natural language processing (NLP) techniques to process

these texts for use in estimating my model.

First, I use text descriptions of every app update, called release notes to classify every update

as either a Bug Fix update, which makes incremental changes, or a Feature update, which adds

new features or functionality. To do so, I classified a set of release notes by hand, which are then

used to train a support-vector machine (SVM). The SVM is able to process every update’s release

notes and determine whether that update is a Bug Fix or Feature update. This distinction serves

as a proxy for the quality of an update, and allows my model to account for the heterogeneity in

updates.

Second, I develop a method for defining precise categorical markets by again applying NLP

and ML techniques to the text app descriptions. This approach is similar to that of Hoberg and

Phillips (2016), who use the text provided in annual SEC reports to define annualized product

markets. In this case, I map the text descriptions to a vector space, and then identify apps

by clustering the descriptions in that space using the X-Means clustering algorithm, a form of

unsupervised machine learning. This approach should prove useful for other researchers studying

long-tail product industries, such as online retailers, or peer-to-peer transaction markets such as

Craigslist.6

I find that digital product updates increase extensive-margin, purchase demand, but that con-

sumers do not appear to differentiate based on the content of updates. That is, there is no statistical

evidence that consumers are more responsive to Feature updates than Bug Fix updates. While the

exact mechanism behind this result is unclear, it suggests that consumers may be poorly informed

5E.g., Baker, Bloom, and Davis (2016) develop a new index of economic policy uncertainty using the text of
news reports, Wu (2017) analyzes sexism on a popular Economics message board website, and Aryal, Ciliberto, and
Leyden (2019) find evidence of tacit collusion in the airline industry using earnings call transcripts. Gentzkow, Kelly,
and Taddy (Forthcoming) provide a broad overview of economics research that uses text as data.

6This approach generalizes to other forms of descriptive information on products. E.g., product photographs,
which are collectable from most online marketplaces, could be used.

6

about the quality of digital goods prior to purchase. On the supply side, I estimate the fixed costs

of production for Feature and Bug Fix updates and find that Feature updates are 28% more expen-

sive to produce than Bug Fix updates. These results, that consumers are not more responsive to

Feature updates, and that Feature updates are more costly to produce, coupled with the fact that

44% of the updates in my sample are Feature updates, presents an apparent contradiction, and

points to the need for future work understanding consumer behavior on the intensive, or product-

use, margin of demand. In Section 6.3, I discuss the role of the intensive margin of demand, where

consumers are choosing whether to use previously purchased apps each period, in explaining this

apparent contradiction.

Finally, using counterfactual simulations where I simulate developer behavior in the absence of

digitization, I find that the availability of use monetization and post-purchase updating generally

increases the frequency of updates and the likelihood that a given update is a feature-adding update,

as opposed to a bug-fixing, incremental update. These results suggest that we should expect not

only to see an increased rate of product updating in many other consumer goods industries, but

also an increase in the quality of these updates as quality competition among firms accelerates as

a result of digitization.

This paper proceeds as follows: In Section 2, I provide an overview of Apple’s App Store

marketplace and of the current state of research on the app industry. Given that background,

I develop a model of consumer and firm behavior for the app industry in Section 3. Section 4

outlines the data I use to estimate this model, the data processing steps that must be taken in

order to estimate the model, and provides preliminary evidence of the effect of digitization on

product updating. Section 5 outlines the estimation procedure for both the demand and supply

models, and Section 6 discusses the results of that estimation. Finally, in Section 7, I analyze how

developers’ updating behavior changes under digitization by considering counterfactual simulations

that “turn off” the digital aspects of the industry. Section 8 concludes.

2 The App Store

The mobile application (app) industry is characterized by a small number of distinct platforms, or

mobile operating systems. In 2015 and 2016, the most prominent platforms in the United States

7

were Apple’s iOS, Google’s Android, Microsoft’s Windows, and Blackberry. Apple served 43.3% of

the U.S. mobile platform market as of March of 2016 (ComScore, 2016).

The industry is a textbook example of a multi-sided market. Consumers purchase hardware,

which is exclusively tied to one platform.7 By purchasing the appropriate hardware, a consumer

gains access to the platform’s store, which is the primary (and in some cases only) way to purchase

apps for use on the device. Consumers in this market generally single-home, though some consumers

purchase a phone associated with one platform and a tablet associated with another. For the

remainder of this paper, I limit discussion to Apple’s mobile platform, called iOS, and its exclusive

marketplace, the App Store. While the discussion below is specific to Apple, the general structure

of the platform is applicable to the other mobile platforms.

2.1 Apple’s iOS Platform

Apple’s App Store marketplace is the only approved platform for selling apps for its mobile plat-

form.8 Developers submit their app to the App Store, and, once approved by Apple, the app is

made available to consumers. This approval process ensures that the submitted product conforms

to Apple’s platform policies. During the sample period this paper considers, this process took

approximately a week, though that time has since shortened substantially. This approval process

is applied to all new apps, and to all updates to previously approved apps.

Developers set the price of their app, and are able to change that price at any time. Developers

are restricted to a finite, discrete set of 94 possible prices. Apps can be free, or priced as low as

$0.99 and as high as $999.99. Apple collects 30% of all sales revenue, which is similar to other

platforms (Spencer, 2015).9 Figs. 1a and 1b show a snapshot of the distribution of prices in the

App Store.

In addition to setting a price, developers can choose to include advertisements and/or in-app

purchases (IAPs). IAPs are options within an app to buy additional content or functionality. As an

example, the task management app OmniFocus offers an IAP for the “Pro” version of the product,

7Each platform runs on a corresponding set of hardware devices, primarily mobile phones and tablet computers,
though some also run on other devices such as televisions.

8Apps can be acquired illegally through online piracy. Piracy is relatively limited in this industry, on the iOS
platform, and is not considered here.

9The one exception to this policy, introduced in September 2016, reduces Apple’s share of subscription revenue to
15% on all subscriptions older than a year (Goode, 2016). This change occurred after the sample period considered
in this paper.

8

Figure 1: App Store Prices

(a) Distribution App Store Prices (12/31/2014)

Free $0.99 $1.99 $2.99 $3.99 $4.99 $5.99 $6.99 $7.99 $8.99 $9.99
0

100

200

300

400

500

600

700

800

900

Ap
ps

 (T
ho

us
an

ds
)

(b) Distribution of App Store Prices, Excluding
Free Apps (12/31/2014)

$0.99 $1.99 $2.99 $3.99 $4.99 $5.99 $6.99 $7.99 $8.99 $9.99
0

20

40

60

80

100

120

140

160

180

Ap
ps

 (T
ho

us
an

ds
)

which includes additional task organization capabilities. As with app sales revenue, Apple collects

30% of all IAP revenues. Apps are also allowed to offer subscriptions through Apple’s payment

system or through other means (e.g., a website), but any subscription bought within the app must

be purchased through Apple’s system.

In the early years of the App Store, many developers offered two versions of the same product,

a free and a “paid” version. The free version would either be limited in some way, or would contain

advertisements. This was, in general, either an attempt to engage in price discrimination or an

attempt to create a rudimentary “Free Trial” option for users. This practice has largely fallen out

of fashion, particularly among non-game apps.

App production is primarily characterized by the fixed costs associated with designing and

programming the app. In almost all cases, app developers face zero marginal costs when selling

their app. This is both a function of the digital nature of these products, and the fact that Apple

handles all of the “back-end” requirements of selling an app: managing the computer servers that

host the files that consumers download, processing all transactions on the platform, and managing

the (digital) storefront.

2.2 Existing Research on Smartphone Applications

This paper contributes to a small, but growing literature on smartphone apps. Early work was

largely descriptive, but research has since expanded to studying cross-platform entry decisions

9

(Bresnahan, Orsini, and Yin, 2014; Liu, 2017; Nekipelov, Park, and Liu, 2013), consumer search

(Ershov (2018)), firm strategy (Bresnahan, Li, and Yin (2016), Davis, Muzyrya, and Yin (2014), and

Yin, Davis, and Muzyrya (2014)), and the relationship between mobile platforms and developers

(Gans (2012))

There has been some research on the demand for apps and on app updates, though to my

knowledge, no paper has explicitly considered the effect of updates on consumer utility as this

paper does. Yin, Davis, and Muzyrya (2014) find that the level of updating by the most successful

apps varies by category. Specifically, highly successful game apps update infrequently, while the

most successful non-game apps update more frequently. Ghose and Han (2014) estimate a demand

model in the style of Berry, Levinsohn, and Pakes (1995) across the App Store and the Google Play

Store. They use a nested-logit model, where consumers choose first whether to download a Free or

Paid app, then a category of apps, and finally which app to buy. Using this model, Ghose and Han

find evidence that consumer demand is higher the more recently an app has been updated.

Of particular relevance to the issues studied in this paper is Comino, Manenti, and Mariuzzo

(2018), which considers the effect of app updates on the growth rate of downloads. They find

that the growth rate of downloads is positively affected by updates on Apple’s platform, while

there is no effect in the Google Play Store—a difference they attribute to Apple’s strict app review

process, which is interpreted as having a positive effect on the overall quality of the apps and app

updates on Apple’s platform compared to Google’s. My paper builds on this idea of app updates

affecting demand by directly estimating how updates affect consumer utility, and by modeling the

supply-side decision of when and how to update an app.

3 A Structural Model of the App Store

In this section, I develop a model of consumer and developer behavior in the smartphone application

(app) industry. Each period developers choose whether, and if so, how, to update their app.

Developers earn revenue through both an extensive margin of demand, which captures consumers’

app purchase decisions, and an intensive margin of demand, which captures consumers’ app use

decisions. Extensive-margin revenue comes from new purchases, while intensive-margin revenue can

come from three possible sources: in-app purchases (IAPs), advertisements (ads), and subscriptions.

10

On the demand side, consumers choose each period whether to purchase an app in a given

market (extensive margin demand). Consumers make static decisions, but are forward-looking as

they consider the expected lifetime value of owning an app. At the same time, consumers choose

each period whether to use any of their previously purchased apps (intensive margin demand). This

additional margin of demand is important because many apps earn revenue (in whole or in part)

from consumers’ intensive-margin, use decisions. Due to a lack of available data on consumers

intensive-margin behavior, I am unable to estimate a structural model of the intensive margin of

demand.10 Instead, I use a reduced form approximation of an app’s total revenue when estimating

the supply-side app updating model.11

3.1 Timing

Time in this model is discrete, and indexed by t. In my empirical estimation of this model a period

is a week. The timing for each period is as follows:

1. The developer of app j observes the current state of the market, Sjt, and chooses whether,

and if so, how, to update their apps.

2. Apple reviews the update submission, and, once approved, propagates the update to the App

Store storefront for potential new customers to see, and to all previous purchasers of app j.12

3. Market-level demand-shocks are realized, and consumers observe their individual consumer-

app match values.

4. Consumers make their extensive margin decisions of what app, if any, to purchase, and their

intensive margin decisions of what previously purchased apps, if any, to use.

5. Developers receive their extensive- and intensive-margin revenue.

10In Appendix D I outline a basic model of consumer behavior on the intensive margin, which is used to calculate
consumers’ lifetime expected utility from purchasing an app.

11See Section 4.2 for a discussion of how I approximate apps’ per-period revenue, and Section 5.2 for a how I
estimate the supply-side model.

12See Section 2 for a description of this review process. I ignore the possibility that Apple might reject an update.

11

3.2 A Model of App Demand

As discussed above, consumers face two separate decisions each period: whether to purchase a new

app, and whether to use any already owned apps.

Extensive Margin of Demand On the extensive margin of demand, consumer i receives utility

uijt from purchasing app j in period t, and chooses the app that provides the greatest utility. In

doing so, the consumer considers the potential future benefits of owning the app. Specifically, the

utility from app j, uijt is

uijt = Xjtβ + αpjt + ξjt + Λijt + εijt

ui0t = εi0t

(1)

and ui0t is the utility from the outside option of not purchasing an app. Xjt is a vector of observable

app characteristics, which includes the app’s file size and age-appropriateness rating, whether or

not the app includes IAPs, ads, and subscriptions, and month, year, and iOS version fixed effects.

pjt is the price of the app, which may be $0.00. ξjt is the mean unobservable consumer utility

from the app, and represents the utility that results from unobserved (to the econometrician)

characteristics of the app. Λjt is the expected, discounted future utility from app j, capturing the

fact that consumers anticipate both the future use value of the app, and future updates to the app

when making a purchase decision. Finally, εijt is a period-specific, consumer-app match value. I

assume that εijt ∼ i.i.d. Type I Extreme Value, which admits a closed form solution for the share

of consumers purchasing app j at time t, sjt.

sjt =
exp(Xjtβ + αpjt + Λjt + ξjt)

1 +
∑

k exp(Xktβ + αpkt + Λkt + ξkt)
(2)

Mean Unobservable Consumer Utility (ξ) Even within the same market, apps are highly

differentiated, and, while there are some app characteristics that are observable to the econome-

trician, many key features are not. These unobserved characteristics are captured in the demand

model by ξjt. ξjt captures a wide variety of unobserved characteristics including primary functions

of an app, subtle features that differentiate it from its competitors, as well as other, broader char-

acteristics that might affect a consumer’s demand decision, such as whether it is particularly easy

to find through the App Store’s user interface.

12

It is unlikely that many of the unobserved characteristics captured by ξjt, such as specific

functionality of the app, will vary period-to-period in an i.i.d. way. For example, a note-taking

app would not offer a search feature one period, remove it the next, and then reinstate it in a third

period. To capture this, I assume ξjt follows an AR-1 process, expressed as

ξjt = ρξjt−1 + ηjt

where the unobserved quality of the app is correlated over time according to ρ, but is still subject

to i.i.d., mean-zero shocks ηjt.

While the process above captures the fact that unobserved product characteristics will be fairly

consistent period-to-period, it does not account for the fact that when a developer updates an app,

ξjt is likely to change in a more substantial way than it would absent an update. To account for

this, I model app updates as directly affecting ξjt, by assuming that ξjt undergoes a one-time,

vertical shift as the result of an update. Namely, assume ξjt follows the law of motion

ξjt = ρξjt−1 + g(aj,t;µ) + ηjt (3)

where aj,t is the developer’s updating decision in period t, and g(aj,t;µ) captures the effect of the

developer’s update decision on ξ. In estimation, I use a linear sum of dummy variables, such as

g(aj,t;µ) = µBF 1(aj,t = Bug Fix)− µF 1(aj,t = Feature)

when considering two types of updates: Feature and Bug Fix updates.

Note that unpacking the variety of possible mechanisms captured by ξ, while potentially in-

teresting, is not necessary in order to answer the questions considered in this paper. All that is

necessary in order to see whether consumers respond to updates is that the net effect of updates

on consumer behavior is captured.

Expected, discounted future utility (Λ) When making purchase decisions, consumers have

expectations over the likelihood of future updates, and over future consumer-app match values

which are relevant to the consumer’s period-specific, intensive margin, use decisions. In order

13

to construct a measure of consumers’ lifetime expected utilities of owning an app I assume that

consumers make independent, binary choices of whether to use each of their previously purchased

apps. In each period, after purchasing an app the consumer will receive utility based on either

using the app or choosing the outside option of not using that app. Therefore, I define the lifetime

expected utility of owning app j, purchased in period t, Λjt, to be the discounted sum of the per-

period expected utility of owning an app, with expectations over the developer of app j’s future

updating decisions. This takes the form

Λijt = E

[∞∑
τ=t+1

δτ−t ln
(

1 + eXjτβ+ξjτ
)]

(4)

where δ is the discount factor. See Appendix D for the derivation of Λjt.

3.3 A Model of App Updating

Next, I develop a dynamic model of app updating. Apps in market m are indexed j ∈ Jm.

Developers face a choice each period t = 0, . . . ,∞ regarding whether, and if so, how, to update

their app. I denote the state for period t from the perspective of firm j as Sj,t.

Motivated by computational restrictions, I make three simplifying assumptions. First, I restrict

developers to a discrete set of potential updates, so that the developer’s per-period choice set is

A = {∅, Bug Fix, Feature}, with ∅ representing the choice to not update the app. Second, there

is relatively little within-app variation in the monetization strategies used by developers, and so I

assume the choice of how to monetize an app, including the price of the app, is determined when

the app enters the App Store, and is otherwise fixed. Finally, multi-app developers are assumed to

treat the development of each app separately. The cost of this assumption is that this model will

fail to account for any economies of scope in the production of apps. Only 8% of developers in the

sample have more than one app in a given market.

The revenue an app earns each period is a function of the app’s fixed monetization strategy.

Monetization strategies consist of some combination of setting a non-zero price, and including

advertisements, subscriptions, or in-app purchases (IAPs) in the app. It is possible that some

apps earn revenue in additional ways, such as through accompanying hardware or services that are

not sold through the App Store, and/or by selling users’ information to third parties (see Kesler,

14

Kummer, and Schulte (2017)).

Developers choose ajt ∈ A for each period t = 0, . . . ,∞ in order to maximize

E
∞∑
t=0

βt
(
π(aj,t, Sj,t) + θεεj,t(aj,t)

)
(5)

where the per-period profit function π(aj,t, Sj,t) is

πj,t(aj,t, Sj,t) + θεε(ajt) = Rj(aj,t, Sj,t)(1− φ)

− θBF 1(aj,t = Bug Fix)− θF 1(aj,t = Feature) + θεεj,t(aj,t)

(6)

Rj is the revenue the app earns, θBugFix and θFeature represent the fixed costs of updating, and

εjt is an i.i.d. Type I Extreme Value error, which captures the fact that apps may earn additional

revenue in the given period that is not captured by the model and available data. φ is the share

of revenue that the platform collects. In the case of Apple, φ = 0.3. Note that marginal costs are

assumed to be 0, as discussed in Section 2.

Rj is defined as

Rj(aj,t, Sj,t) =

Direct Sales Revenue︷ ︸︸ ︷
pjsj,tMm,t + (Intensive Margin Revenue)

(7)

where intensive margin revenue can come from advertisements, in-app purchases, subscriptions, or

any combination of the three. Mm,t represents the market size of market m in period t.

Equilibrium When deciding whether to update their app, developers must weigh the current-

period fixed cost of updating against present- and future-period revenues that would result from

updating. I assume a Markov Perfect Nash Equilibrium (Ericson and Pakes, 1995). In such an

equilibrium, strategy σj maps from a given state (Sj , εj) to an action aj without dependence on

t. Then, following Bellman’s principle of optimality, the value to a firm in a given state can be

expressed as

V σ
j (Sj , εj) = max

aj∈A
[π(aj , Sj) + θεεj(aj) + βE

[
V σ
j (S′j)|Sj , aj

]
(8)

15

and, since ε is i.i.d. Type I Extreme Value, I can express the optimal strategy for j as a conditional

choice probability:

P σj (a, Sj , σ−j) =
exp

(
νσj (a, Sj , σ−j)

)
∑

a′∈A exp
(
νσj (a′, Sj , σ−j)

) (9)

where νσj (·) is the choice-specific value function:

νσj (a, Sj , σ−j) =
1

θε
(
π(a, Sj) + βE

[
V σ
j (S′j)|Sj , aj

])
(10)

I assume a Markov Perfect Nash Equilibrium exists. Making this assumption is required due to

the fact that this model has continuous state variables (e.g., download size, market size, and ξjt).
13

4 Data

4.1 Description of Data

I estimate the model developed in Section 3 using data from the Productivity category on Apple’s

App Store platform. The category includes calendar apps, task management apps, and other apps

meant to improve work or personal productivity in a wide variety of ways. The sample begins on

December 31, 2014 and ends on June 29, 2016.

The data used in this project comes from a variety of sources. Product characteristic data,

including information regarding product updating, comes directly from the App Store. I observe

a number of characteristics for each app, including the app’s name, price, file size (in megabytes),

age-appropriateness rating, the day the app was first released, the version number of the app, the

category classification of the app, and what devices the app is compatible with. I also observe a

text description of each app and app update, both written by the developer.

In addition to the characteristic data, I also collect from the App Store three daily sales ranking

lists. I observe the Top Free, Top Paid, and Top Grossing lists, which rank apps by either the

quantity sold (Top Free and Top Paid) or by the apps’ gross revenues (Top Grossing). Finally, I

augment this App Store data with data from the analytics company AppFigures on which apps

display advertising, and with sales data collected directly from a small number of the developers

13As noted in Sweeting (2013), it would be possible to discretize these continuous state variables in order to then
apply the proof of Doraszelski and Satterthwaite (2010) that a pure strategy equilibrium exists.

16

who have apps in my sample.

In order to estimate the structural model, it’s important to restrict my sample to those apps

that are actively competing on the app store. There are two reasons why such a restriction is

necessary. First, apps can be broadly classified as either “companion” or “product” apps, where

the former are apps that are companions to, or work in conjunction with, other products or services

outside of the App Store (e.g., the Wells Fargo or American Airlines apps), and the latter are apps

that are a primary product being sold by the developer. Companion apps should be excluded from

this study because, in many cases, their development is not profit-maximizing from the perspective

of the App Store. For example, while American Airlines may not make any revenue from its app

(particularly during this sample period), it is likely willing to invest in the development of the app

because the app supports the company’s overall ticket sales business.

Second, because entry into the app store is relatively inexpensive, and the cost of keeping a

poorly selling app on the app store is negligible, there are a large number of “abandoned apps,”

that are not being actively developed, and that have limited, or even zero, sales during the sample

period. In order to restrict my focus to apps that are actively competing on the platform, I limit my

sample to apps that reach a ranking of at least 200th on the Top Grossing list for at least 10% of the

sample period. This restriction, combined with the decision to focus on the Productivity category

allows me to avoid both companion and abandoned apps as much as is possible. See Appendix A

for further discussion of both of these issues.

My estimation sample consists of 356 apps. On average, a version of an app lasts 19 weeks

before being updated, though there is a wide variance in the frequency of updating. Figure Fig. 2a

shows the distribution of the time between updates. To some degree, this heterogeneity can be

explained by app-level differences in updating behavior. The average app updates every 19 weeks,

though the median app updates every 14 weeks. Fig. 2b shows the distribution of average updating

frequency, aggregated at the app-level.

Apps are monetized through some combination of non-zero pricing, subscriptions, advertise-

ments, and in-app purchases (IAPs). 49.5% of apps in the sample have a non-zero price, while

64.6% use at least one form of use-monetization. Fig. 3a shows the percentage of apps using each

type of monetization, and Fig. 3b shows the fraction of apps in the sample using each possible

monetization strategy.

17

Figure 2: App Version Ages

(a) Distribution of App Version Ages

0 20 40 60 80
Weeks

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) Average Version Age by App

0 20 40 60 80
Weeks

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3: App Monetization

(a) Monetization Types

Iap Paid Subscription Ad
0

10

20

30

40

50

60

Pe
rc

en
t o

f A
pp

s

(b) Monetization Strategies

Apps Percent

Paid 126 14.00
IAP 83 9.22
Subscription, IAP 77 8.56
Paid, IAP 39 4.33
Paid, Subscription, IAP 17 1.89
Advertisements, IAP 9 1.00
Paid, Subscription 3 0.33
Paid, Advertisements, IAP 1 0.11
Advertisements, Subscription, IAP 1 0.11

Fig. 4 shows the distribution of prices across the sample period. Prices are relatively constant

over the sample period, and only 28 of the 356 apps ever change from free to paid, or vice versa,

and these changes only account for 0.32% of the app-weeks in the sample.

In order to estimate the model in this paper I must first address three issues in the data. First,

in Section 4.2 I account for the fact that sales data is, in general, unavailable for this industry. In

Section 4.3, I use text descriptions of the app updates, called release notes, to classify updates based

on their content. Finally, in Section 4.4 I discuss and address the challenge of defining markets

in the App Store. In Section 4.5 I present preliminary evidence of the relationship between use

monetization and updating.

18

Figure 4: Distribution of Prices

0.0 0.99 1.99 2.99 3.99 4.99 5.99 6.99 7.99 8.99 9.99 10.99+
Price

0

10

20

30

40

50

Pe
rc

en
t o

f A
pp

s

4.2 Estimating App Sales

Estimating the demand model (Eq. (1)) requires data on period-specific market shares. Here, as in

many industries, sales data is proprietary, and direct data on market shares for my entire sample is

unavailable. In studies of smartphone apps and other online markets, this issue has been dealt with

in two ways. Bajari, Fox, and Ryan (2008) develop a method for estimating demand directly from

sales ranking data, but their method requires that observable product characteristics are sufficient

for determining a consumer’s preference ordering within a market. Given the importance of the

unobservable characteristics represented by ξ in my model, and, in particular, the manner in which

product updates are incorporated into the ξ process, adopting the estimation approach developed

by Bajari, Fox, and Ryan (2008) is not appropriate in this case.

The second approach, which has been widely used in research on apps, is to first estimate

a relationship between an app’s sales ranking and its level of sales using a secondary source of

information about app sales. Then, this estimated relationship is used to predict sales for all

products in all periods, and the demand model is estimated using market shares that are computed

using these predicted sales values. This approach for mapping sales ranking data to sales quantity

data in online markets was pioneered by Chevalier and Goolsbee (2003) and Brynjolfsson, Hu, and

Smith (2003) in studying online book sales, and applied to app markets by Garg and Telang (2012),

Ghose and Han (2014), and Ershov (2018), among others.14 In most applications, the relationship

between sales ranking and sales quantity is estimated using publicly available ranking data and

14This approach has also been applied by app developers, see, e.g., Perry (2015)

19

a small (relative to the sample of apps being studied) amount of sales data either collected from

various developers or collected from small, independent app marketplaces.15

Apple provides three types of sales ranking lists, at both the storewide and the category level.

The exact algorithms for the ranking lists are unknown, but they roughly rank apps by sales.16,17

The Top Free list ranks apps with a price of $0.00 by sales quantity, the Top Paid list ranks apps

with a non-zero price by sales quantity, and the Top Grossing list ranks all apps by revenue. I

use the Top Free and Top Paid ranking lists at the category level to estimate sales because they

directly account for apps’ period-specific downloads, which is the necessary variable for computing

the market shares used in the demand estimation. I assume sales ranking data follows a Pareto

distribution, and estimate the following regression.

ln(salesjt) = α− β ln(rankjt) + γmonth,year + εjt (11)

I estimate Eq. (11) using publicly observable ranking data, and the sales quantity data I have

collected directly from some of the developers in the sample. Table 1a describes the data used to

estimate this relationship. The apps in this dataset are ranked between 5 and 498 during the sample

period, with an median ranking of approximately 118th. Column 1 of Table 1b shows the results of

estimating the rank-sales relationship for the Top Paid ranking list. Due to data limitations, I am

only able to reliably estimate Eq. (11) for the Top Paid ranking list in the Productivity category.

In order to also calculate sales for the Free apps in the sample, I follow Ghose and Han (2014) in

assuming that the shape, β, of the relationship between an app’s ranking and its sales is the same

for both the Free and Paid list, but that the scale parameter, α, can differ. I calibrate αFree = 7.175

using sales data collected from developers’ that produce Free apps.

My estimate of β = 0.424 is lower than what is typically found in the literature. Garg and

Telang (2012) summarize seven studies of this relationship in non-app industries, and find that

15Instead of using rankings, Liu (2017) uses app ratings and/or reviews as a proxy for sales. An app rating is an
integer between 1 and 5 that the consumer assigns an app, whereas a review is a rating accompanied by a textual
comment on the product. This approach can be unreliable, though, as some developers actively prompt users for
ratings and/or reviews while others do not.

16While Apple’s internal policies regarding the ranking algorithm are not known, the view within the industry is
that the lists do follow some explicit algorithm, which is not altered to benefit any particular app (e.g., for promotional
reasons).

17Bresnahan, Li, and Yin (2016) study apps that attempt to game the ranking lists, though not by altering the
ranking algorithm itself.

20

Table 1: Ranking-Sales Estimation

(a) Ranking-Sales Descriptive Statistics

Downloads Ranking

Mean 95.01 147.87
Median 36 117.5
Standard Deviation 274.89 107.21
Minimum 10 5
Maximum 4,826 498

Note that the best (i.e., most sales) possible ranking
is 1, so the minimum ranking corresponds to the

maximum number of sales, and vice versa.

(b) Ranking-Sales Parameter Estimates

Top Paid Top Grossing

α 5.231*** 7.102 ***
(0.182) (0.204)

β 0.424*** 0.404 ***
(0.025) (0.031)

R2 0.760 0.738

Regressions include month-year fixed effects.
Standard errors are in parenthesis. * p < 0.10, **

p < 0.05,
*** p < 0.01.

estimates range from 0.613 to 1.2. In app markets, Ghose and Han (2014) estimate β = 1.09, and

Ershov (2018) estimates the parameter to be 1.168 for games and 0.926 for non-games.

There are two possible reasons for the difference between my estimates and those found in the

literature, particularly those of Ghose and Han (2014) and Ershov (2018). First, my estimates are

the only ones calculated using sales data from Apple’s App Store, and the shape of the ranking-

sales relationship may differ between platforms. Ghose and Han (2014) use data from a third-party

(i.e., not Google nor Apple) app marketplace, and Ershov (2018) estimates the relationship for the

Google Play Store using the lower bound of sales ranges the store provides publicly.18

A second reason is that the shape of the ranking-sales relationship may be changing over time.

Using data on Amazon’s book sales, Brynjolfsson, Hu, and Smith (2010) find evidence that the

shape parameter has decreased in magnitude over time, as weight has shifted to the tail of the

distribution. A similar change may be occurring in app markets. The sample period for this paper

(12/31/2014 to 6/29/2016) is more recent than other papers that have estimated this relationship,

so a smaller estimate of |β| might be consistent with their findings. Currently, data limitations

restrict my ability to further investigate whether the shape of the ranking-sales relationship has in

fact changed over time in the App Store.

Given the results in column 1 of Table 1b, sales quantities are estimated for all apps in the

sample based on their ranking each period. For the remainder of this paper, any reference to an

app’s sales quantity (or market share) should be viewed as a reference to that app’s estimated sales

18For example, an app with cumulative sales of 45,000 is publicly listed as having “10,000 to 50,000” sales. See
(Ershov, 2018, Table A2) for the sales ranges provided.

21

quantity (or market share). Additionally, I estimate this model for apps’ per-period revenues using

the Top Grossing list, which are shown in column 2 of Table 1b. These revenue estimates are used

in the estimation of the supply model (see Section 5.2).19

4.3 Classifying Updates

In order to understand how consumers respond to app updates, it is important to account for the

differences between specific updates. Updates serve a variety of purposes—from totally re-inventing

an app to fixing a small typo in a rarely-used part of an app—and are released under a variety

of circumstances—some updates are part of a large promotional campaign by the developer, while

most are released without any fanfare. Developers provide two sources of information about the

content and purpose of updates. The first is the update’s version number, a sequence of numbers

that developers ostensibly use to track the development of an app. The second is the update’s release

notes, a set of notes outlining the specific changes included in a particular update. I take advantage

of both of these sources of information, and develop two distinct classifications of updates.

4.3.1 Classifying Updates by Version Numbers

Every time a developer updates an application, they change the version number, which serves as a

developer-defined index of the development of an app. Among software developers, it is customary

to use the change in the version number to indicate the magnitude or importance of an update.

For example, an update from version 4.3.1 to 5.0.0 typically indicates a major revision, whereas

an update from version 4.3.1 to 4.3.2 typically indicates a smaller update. Borrowing vocabulary

from the developer community, I classify any update where the first number in the version number

changes (e.g., 4.3.1 to 5.0.0) as a Major update, and any update where any of the subsequent

numbers change (e.g., 4.3.1 to 4.3.2) as a Point update (so-called because the numbers after the

first “point” are changed). However, there are no formal rules regarding version numbering, so

updates where the version number changes from, for example, 4.3.1 to 5.0.0 may only include

19Note that the extent to which Apple is able to observe an app’s revenue, and therefore the extent to which it
is able to rank apps by revenue, is limited by the fact that Apple is only able to observe revenue that is collected
through its platform. Apple observes all direct sales and IAP revenue, as well as any subscription revenue in cases
where the subscription is managed and transacted through Apple’s platform. Additionally, Apple ran a now-defunct
advertising platform, iAd, during this sample period, however developers could also use competing platforms (e.g.,
Google AdWords).

22

minor changes to the app despite the “large” change in the version number.

4.3.2 Classifying Updates by Release Notes

While changes in an app’s version number can be informative about the importance of an update,

the lack of a clearly defined set of rules for version numbering means they don’t provide a clear

sense of the content of an update. As noted above, many apps in the App Store have Major updates

where only small adjustments have been made, while many Point updates include the addition of

important new features. Given this, I also make use of each update’s release notes in order to

classify updates solely by their content.

Specifically, updates are classified as either Bug Fix updates or as Feature updates. Concep-

tually, Bug Fix updates include changing the app so that it no longer crashes whenever the user

performs a certain action, updating the app so that it is able to run on new devices or operating

systems, and implementing “under-the-hood” changes, which involve cases where the developer

makes changes primarily for the developer’s own benefit—for example, by changing the underlying

database system to something that the developer finds easier to work with, but that the consumer

would be unaware of. Feature updates are those that add additional, user-salient functionality or

content to the app. For example, updates that add voice dictation to a note-taking app, or add

audio pronunciations to a dictionary app would be Feature updates.

I use a support vector machine (SVM) to classify updates using their release notes. An SVM

is a form of supervised machine learning that is trained using a set of pre-classified release notes,

and then, once trained, is able to classify the updates in my sample. In practice, I first convert the

text release notes into vectors using a combination of natural language processing techniques. I

discuss this process in Appendix B. Once the release notes have been “vectorized,” I train the SVM

using 782 app updates that I have classified by hand. Fig. 5 outlines the set of rules under which

the training set was built. Two-thirds of the trained release notes are used to train the SVM, and

the remaining third is used to test the performance of the machine. The results of these tests are

shown in Table 2a. I use the trained model to classify every app update in my sample.

In Table 2b, I present a cross tabulation of updates according to both the Version Number

classification system (Point and Major updates) and the SVM classification system (Bug Fix and

Feature updates). 93.1% of updates classify as a Point update, though, notably, 57.7% of those

23

Figure 5: Release Notes Update Classification Training Rules

Feature Update

• Adds additional functionality.

• Adds additional content.

• Adds support for a new language.

Bug Fix Update

• Any direct mention of fixing bugs.

• Performance improvements or anything
indicating “under-the-hood improve-
ments.”

• Adjustments to maintain compatibility
with the latest version of iOS.

• Changes to existing functionality that im-
ply minor improvements to existing func-
tionality, not the addition of more func-
tionality.

Table 2: Update Classification

(a) Update Classification Precision and Recall

Precision Recall N
Bug Fix 0.92 0.90 185
Feature 0.76 0.79 73

Average/Total 0.87 0.87 258

Precision indicates the ratio of the number of correctly
predicted cases for a given update type to the total num-
ber of cases predicted to be of that type. Recall is the
ratio of the number of correctly predicted cases for a
given update type to the total number of cases of that
type.

(b) Cross Tabulation of Update Classifications

Point Major Total
Bug Fix 1,473 69 1,542
Feature 1,079 119 1,198

Total 2,552 188 2,740

24

Figure 6: Updates By Type

(a) Version Number Classification

2015-01 2015-05 2015-09 2016-01 2016-05
Week

0

20

40

60

80

100

Nu
m

be
r o

f U
pd

at
es

Point
Major

(b) Release Notes Classification

2015-01 2015-05 2015-09 2016-01 2016-05
Week

0

10

20

30

40

50

60

70

Nu
m

be
r o

f U
pd

at
es

Bug Fix
Feature

updates add new features or functionality to the app. Part of the concern about using the Version

Number classification system is evident in Table 2b, as only two-thirds of Major updates actually

add new features or content to the app. Fig. 6 shows the number of updates by type over the

sample period. In general, consistent with the cross tabulation, Bug Fix updates outnumber Feature

updates, but there is time variation in the ratio of the two types of updates and at times Feature

updates outnumber Bug Fix updates. For example, in late September 2015, just following the

release of a new model of the iPhone (indicated by the dashed vertical line), there is a spike in the

number of Major updates, which outnumbers Minor updates in that period.

4.4 Defining Markets

Finally, estimating the model developed in Section 3 requires defining markets within the Produc-

tivity category of the App Store. Properly defining the relevant market for a product has long

been a challenge in empirical market analyses, and markets for digital goods provide additional

challenges. In this context, the wide variety of monetization methods used make it difficult to

develop and employ systematic methods for defining markets.

Traditional, systematic methods for defining markets, such as the commonly employed “small

but significant and non-transitory increase in price” (SSNIP) test, are especially difficult to develop

and apply due to the challenge of calculating the elasticity of demand when many products are

priced at $0.00 (Evans, 2011). Approaches that do not involve price elasticity calculations are also

difficult to employ, given the variety of ways products are monetized in this industry. Examples of

25

this include the recently suggested “small but significant and non-transitory increase in (exchanged)

costs” (SSNIC) test, where exchanged costs represent exchanges of information or attention in

return for a product, and the “small but significant and not-transitory decline of quality” (SSNDQ)

test, which was employed in a 2013 case before the Chinese Supreme People’s Court (Newman,

2015).

It is not clear, for example, how to define a product’s exchanged costs when the firm employs

multiple forms of monetization, or even when a firm employs a single form of monetization, but has

the ability to employ multiple forms of monetization.20 That is, estimating the SSNIC associated

with a paid-upfront price increase of x would have to account for the endogenous response of the

product’s advertisement level, number and prices of in-app purchases, and/or its subscription price.

This would still be abstracting from the endogeneity of which forms of monetization a particular

product uses. While such an abstraction is reasonable in a typical, non-digital industry, where all

firms charge for a product at the point of purchase, or where all firms use a single form of alternative

monetization (e.g., advertising), it is less reasonable for app markets given the varied manner in

which the products are monetized. Finally, accounting for all of this would be difficult in terms of

modeling, and also computationally difficult given the large number of potential products available.

Previous Approaches for Defining Markets in the App Industry In the literature on

smartphone apps, markets have generally been defined by adopting the categories used within the

marketplaces themselves. That is, in Apple’s App Store, each of the 22 consumer-facing categories

would each be considered a market.21 This approach of adopting the platforms’ categories is overly

broad and can suggest competition where there is none. For example, within Apple’s Productivity

category, there are a number of apps that allow a user to deploy an encrypted virtual private

network in order to secure their internet communications. At the same time, there are many apps

that help users manage their photos for the photo-sharing app Instagram. While some consumers

may use both, the apps serving one of these two purposes are unlikely to be in direct competition

with each other. In order to properly characterize consumer choice, and model firms’ strategic

20See Newman (2015), particularly pages 66–67, for a discussion of implementing the SSNIC test. Notably,
though, this discussion implicitly assumes that the monetization strategy used by firms is fixed, whereas in many
digital industries, including apps, it is not.

21There are, to some extent, sub-genres defined within the App Store, but during this sample period they were
primarily used for Game apps, which are not considered in this paper.

26

Figure 7: App Description

behavior in these markets, it is important to define markets in such a way as to properly account

for demand-side substitution that occurs within markets.

One improvement on this market definition approach is that of Ghose and Han (2014), who offer

a more detailed approach by using a nested structure for markets, where consumers first choose

whether to buy a paid or free app, and then which category to shop in. However, this too fails to

account for the large amount of heterogeneity within product categories.

I define markets by combining apps’ categorical classification with additional information pro-

vided by the apps’ developers. Within the Productivity category I cluster apps using an unsuper-

vised machine learning algorithm based on the text app descriptions provided by the developers.

These descriptions are a prominent part of apps’ listings on the App Store, and thus developers have

a strong motivation to provide a clear description of their product. Fig. 7 shows the description of

the note-taking app Bear.

Defining Markets via Clustering I use a combination of natural language processing tech-

niques and an unsupervised clustering algorithm to define markets.22 First, all app descriptions

22See Hoberg and Phillips (2016), who use the text provided in annual SEC reports to define annualized product
markets, for a related approach.

27

undergo the same text pre-processing process outlined in Appendix B. The specific parameters of

this process are separately determined for the market definition algorithm.

Once the app descriptions have been processed and vectorized, I define markets using the X-

means clustering algorithm (Pelleg and Moore, 2000).23 X-means clustering is an extension of

the k-means clustering algorithm, and uses the Bayesian Information Criterion (BIC) to determine

the optimal number of clusters, an issue that the traditional k-means algorithm cannot address.

Broadly, the k-means algorithm is a recursive algorithm that places a set of k centroids in the app

description vector space, assigns each app to the closest centroid, and then adjusts the location of

the centroids to minimize the distance between a centroid and its constituent apps. This process

continues until convergence. The X-means algorithm improves on this by beginning at a low

number of centroids, running the k-means algorithm, and then again using the k-means algorithm

and the BIC to determine whether any of the defined clusters (i.e., markets) should be split in two.

It then runs the k-means algorithm with the new number of clusters. The algorithm cycles through

these steps until convergence. I discuss both algorithms in more detail in Appendix C.

While the X-means algorithm is able to select the optimal number of clusters (i.e., markets),

there is still a question of what parameters should be set for the text pre-processing stage. To

address this, I repeat the clustering algorithm across a grid of text processing hyper-parameters,

and select the vector of parameters that maximize a scoring metric. In particular, I use the

silhouette score, which provides an average measure of how well each app matches with its market,

compared to how it matches with the other markets (Rousseeuw, 1987).

23I use the X-means clustering implementation in the pyclustering library (Novikov, 2018)

28

Table 3: Market-Level Summary Statistics

Monetization Updates Characteristics
Price Price (Paid apps) Version Number SVM Age Appropriateness Rating

Market Apps Min Mean Median Max Min Mean Median Max Free IAP Ad Subs Minor Major Bug Fix Feature Size 4+ 9+ 12+ 17+

0 10 0.00 4.41 1.99 19.99 0.99 8.68 7.99 19.99 0.491 0.491 0.000 0.108 0.061 0.001 0.037 0.026 2.661 0.892 0.108 0.000 0.000
1 3 0.00 3.10 4.99 4.99 1.99 4.76 4.99 4.99 0.349 0.670 0.000 0.000 0.119 0.009 0.041 0.092 3.076 1.000 0.000 0.000 0.000
2 10 0.00 6.48 2.99 29.99 1.99 11.33 9.99 29.99 0.428 0.687 0.000 0.380 0.085 0.006 0.042 0.048 2.816 0.996 0.000 0.004 0.000
3 15 0.00 3.16 1.99 19.99 0.99 5.93 6.99 19.99 0.467 0.743 0.000 0.415 0.128 0.006 0.080 0.054 3.121 0.929 0.000 0.000 0.071
4 9 0.00 3.69 3.99 7.99 2.99 5.48 3.99 7.99 0.326 0.422 0.000 0.334 0.034 0.005 0.012 0.026 1.310 1.000 0.000 0.000 0.000
5 10 0.00 3.01 0.00 24.99 0.99 7.52 2.99 24.99 0.601 0.702 0.000 0.499 0.157 0.004 0.095 0.069 3.065 0.899 0.101 0.000 0.000
6 6 0.00 3.84 2.99 11.99 0.99 5.73 3.99 11.99 0.330 0.497 0.000 0.169 0.187 0.007 0.069 0.127 3.804 0.835 0.000 0.000 0.165
7 12 0.00 1.09 0.00 4.99 1.99 2.92 2.99 4.99 0.625 0.887 0.000 0.797 0.061 0.010 0.051 0.020 3.035 1.000 0.000 0.000 0.000
8 21 0.00 10.33 3.99 99.99 0.99 14.97 9.99 99.99 0.310 0.433 0.047 0.048 0.105 0.007 0.054 0.061 3.343 0.812 0.049 0.090 0.049
9 5 0.00 5.76 4.99 9.99 4.99 8.31 9.99 9.99 0.307 0.543 0.000 0.230 0.141 0.016 0.073 0.093 4.377 0.454 0.233 0.077 0.236

10 9 0.00 8.55 4.99 49.99 0.99 11.10 4.99 49.99 0.229 0.451 0.000 0.229 0.068 0.018 0.050 0.036 2.769 0.885 0.000 0.115 0.000
11 13 0.00 10.37 5.99 49.99 0.99 16.10 9.99 49.99 0.356 0.519 0.000 0.327 0.157 0.004 0.091 0.072 3.763 0.918 0.000 0.000 0.082
12 9 0.00 5.59 4.99 12.99 1.99 7.31 6.99 12.99 0.235 0.442 0.000 0.112 0.064 0.006 0.047 0.024 3.180 0.761 0.000 0.000 0.239
13 5 0.00 6.57 4.99 14.99 0.99 8.29 4.99 14.99 0.208 0.397 0.000 0.205 0.095 0.003 0.043 0.057 3.439 0.603 0.000 0.000 0.397
14 17 0.00 2.21 0.00 9.99 0.99 7.13 7.99 9.99 0.690 0.756 0.018 0.133 0.103 0.012 0.059 0.057 3.124 0.641 0.000 0.000 0.359
15 6 0.00 1.74 0.99 4.99 0.99 3.31 3.99 4.99 0.473 0.652 0.000 0.000 0.099 0.007 0.099 0.007 2.398 0.513 0.000 0.000 0.487
16 36 0.00 5.31 1.99 24.99 0.99 9.29 7.99 24.99 0.429 0.511 0.000 0.223 0.095 0.006 0.054 0.049 2.427 0.902 0.000 0.000 0.098
17 5 0.00 12.14 4.99 49.99 1.99 16.47 4.99 49.99 0.263 0.263 0.000 0.263 0.031 0.003 0.024 0.010 2.001 1.000 0.000 0.000 0.000
18 5 0.00 4.58 6.99 10.99 0.99 8.61 9.99 10.99 0.468 0.800 0.000 0.200 0.061 0.003 0.037 0.026 5.157 1.000 0.000 0.000 0.000
19 3 0.00 18.38 6.99 119.99 5.99 27.57 14.99 119.99 0.333 0.333 0.000 0.000 0.101 0.013 0.083 0.031 3.680 1.000 0.000 0.000 0.000
20 4 0.00 7.15 8.99 9.99 1.99 7.40 8.99 9.99 0.033 0.300 0.000 0.000 0.067 0.008 0.037 0.037 3.064 0.683 0.000 0.000 0.317
21 24 0.00 6.40 3.99 39.99 0.99 10.48 4.99 39.99 0.390 0.726 0.000 0.385 0.128 0.006 0.056 0.080 2.965 1.000 0.000 0.000 0.000
22 9 0.00 0.71 0.00 4.99 0.99 3.38 2.99 4.99 0.791 0.819 0.124 0.386 0.096 0.014 0.094 0.016 3.106 0.526 0.000 0.159 0.315
23 14 0.00 3.37 0.00 16.99 1.99 7.96 6.99 16.99 0.577 0.688 0.000 0.147 0.113 0.006 0.071 0.050 2.854 0.934 0.000 0.066 0.000
24 12 0.00 0.00 0.00 0.00 — — — — 1.000 1.000 0.479 0.000 0.090 0.019 0.091 0.019 2.380 0.597 0.000 0.403 0.000
25 13 0.00 2.40 0.00 49.99 0.99 5.69 4.99 49.99 0.579 0.579 0.000 0.320 0.105 0.007 0.071 0.040 2.605 0.910 0.000 0.090 0.000
26 18 0.00 3.02 0.99 12.99 0.99 5.61 4.99 12.99 0.461 0.633 0.000 0.180 0.068 0.007 0.040 0.036 2.571 0.988 0.000 0.012 0.000
27 27 0.00 0.76 0.00 19.99 0.99 6.73 4.99 19.99 0.887 0.979 0.090 0.652 0.136 0.007 0.101 0.045 2.513 0.766 0.046 0.152 0.036
28 26 0.00 3.12 0.00 9.99 0.99 7.34 7.99 9.99 0.575 0.700 0.039 0.354 0.110 0.009 0.063 0.057 2.822 0.616 0.005 0.000 0.380

Total 356 0.00 4.62 0.99 119.99 0.99 9.14 6.99 119.99 0.495 0.642 0.029 0.284 0.103 0.008 0.063 0.049 2.897 0.840 0.016 0.041 0.104

Observations are app-weeks. N = 24, 811.

29

Figure 8: Update Types, By Market

(a) Version Number Classification
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Market

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Lik
el

ih
oo

d
of

 U
pd

at
in

g

Point
Major

(b) Release Notes Classification

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Market

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lik
el

ih
oo

d
of

 U
pd

at
in

g

Bug Fix
Feature

Market Results This X-means clustering process results in 29 markets. Fig. 9 lists the apps

in four of the markets. There are some cases where human judgement might be at odds with the

algorithm’s market choices, but the market definitions generally appear to be reasonable. Table 3

presents overall summary statistics for each of these markets, as well as for the overall sample. The

markets range from a 3-firm market (combination calendar/task management apps) to a 36-firm

market (password management/VPN apps). The average market has 12 apps, with the median

slightly lower at 10 apps. Within each market, there is a wide variety of monetization strategies

in use. In fact, market 24 (social media management apps) is the only market that does not have

a combination of Free and Paid apps. Finally, Fig. 8 shows update frequencies by market under

both classification methods. Notably, there is a wide level of variation across markets in both the

level of updating and the relative level update types.

4.5 Descriptive Evidence

While many apps in the App Store engage in use monetization, many others do not. This provides

natural treatment and control groups for developing a preliminary understanding of how the ability

to monetize a product’s use affects developers’ updating behavior. Of course, a natural concern with

such an analysis is that there is likely selection on unobservables into use or non-use monetization.

Furthermore, analyzing how use- and non-use monetizing apps differ does not capture the effects

of firms’ abilities to update products past the point of sale on their updating decisions. Thus, it

will be necessary to estimate the structural model developed in Section 3 and conduct the proposed

30

Figure 9: Example Markets

CalenGoo
PocketLife Calendar
Week Calendar
LikeTopix Calendar App
One Place
IAFF Foundation Pro-Calendar
Mom’s Daily Planner
CalenMob Pro
Awesome Calendar
iCalendar
CalenMob
Jorte Calendar & Organizer
Calendars by Readdle
Calendars 5
Moleskine Timepage
Shift Work Days
BusyCal

(a) Calendar Apps

Things
Toodledo
Remember The Milk
2Do
TaskTask
HomeRoutines
Pocket Informant
gTasks
Benjamin
Any.do
ATracker PRO
ATracker
Planner Plus
Todo Cloud
Planner Plus
Todoist
FranklinCovey Tasks
Tody
gTasks Pro
OmniFocus 2 for iPhone
Todo
Motivated Moms
OmniFocus 2 for iPad
Focus
OmniPlan 3

(b) Task Management Apps

Print n Share
PrinterShare Mobile
PrinterShare Premium
Printer Pro
PrintCentral Pro for iPhone/iPod Touch
To Print
Quick Print
SMS Export PRO
Quick Print via Google Cloud Print

(c) Printing Apps

Groups
My Contacts Backup Pro
Simpler Contacts Pro
EasilyDo Assistant
Smart Merge Pro
Cleaner Pro
Easy Backup
Cloze
Simpler Contacts
Cleaner
Smart Merge
CCleaner for iOS
Cleaner Master
Interact

(d) Contacts Management Apps

31

Table 4: Preliminary Evidence of the Effect of Digitization on Product Innovation

(1) (2) (3) (4)
Update Update Major Feature

Free 0.0534***
(0.0091)

Use Monetization 0.0437*** 0.0269* -0.0252
(0.0087) (0.0150) (0.0411)

Price 0.0012 0.0006 0.0005 0.0007
(0.0008) (0.0006) (0.0009) (0.0029)

Download Size 0.0005*** 0.0005*** -0.0002 0.0010***
(0.0001) (0.0001) (0.0001) (0.0003)

N 24811 24811 2773 2773

Specifications (1) and (2) estimate a linear probability model of the
updating decision. Columns (3) and (4) are linear probability mod-
els of the type of update, conditional on updating. Observations are
app-weeks. Standard errors clustered at the market level, and are in
parentheses. Regressions also include controls for the month, year, mar-
ket, iOS version, the age of the app (in weeks), and the squared age of
the app. * p < 0.10, ** p < 0.05, *** p < 0.01

counterfactual analysis (Section 7) to fully answer the questions of how the digitization of consumer

goods affects product innovation.

To develop a preliminary understanding of how use monetization relates to product updating,

I regress binary indicators of an app’s updating choice, yjt, on measures of the app’s monetization

strategy, mjt, and a set of covariates. In particular, I estimate the linear probability model

yjt = α+ βmjt +Xjtγ + ε (12)

where Xjt includes the price and download size of the app, as well as controls for the month, year,

market, iOS version, age (in weeks), and squared age of the app. In each case, the coefficient of

interest is β, which indicates how a particular monetization strategy mjt relates to the updating

behavior.

In specification (1) of Table 4, I regress whether or not app j updated in period t on whether

it is a Free app, or one with a price of $0.00. I find that Free apps are 5.3 percentage points more

likely to update than non-free apps. Though—and this finding is consistent across the specifications

considered—there is a positive relationship between an app’s price and its likelihood of updating.

32

In specification (2), I estimate the relationship between the decision to update and whether an app

uses any form of use monetization (which can include apps with a non-zero upfront price). I find

that use-monetizing apps are 4.4 percentage points more likely to update than their paid-only coun-

terparts. Finally, in specifications (3) and (4) I investigate whether there is a relationship between

use monetization and the type of updates developers release. I find there is a relationship when

distinguishing between updates using the Version Number classification system. Use-monetizing

apps are 2.7 percentage points more likely to release a Major update than paid-only apps, con-

ditional on updating. However, there is no evidence of use-monetizing apps behaving differently

than paid-only apps when distinguishing between updates using the Release Notes classification

approach.

5 Estimating the Structural Model

5.1 Demand Estimation

I estimate the model in Section 3.2 using the sample and markets defined in Section 4. Due to the

ξ process, the estimation procedure differs somewhat from the typical approach used to estimate

logit demand models. Recall that the demand model (Eq. (1)) implies the market share of app j

in period t can be expressed as

sjt =
exp(Xjtβ + αpjt + Λjt + ξjt)

1 +
∑

k exp(Xktβ + αpkt + Λkt + ξkt)

In order to derive an estimating equation for the demand model, I transform market shares by

taking the log of both sides (Berry, 1994). This gives

ln(sjt)− ln(s0t) = Xjtβ + αpjt + Λjt + ξjt (13)

Typically, Eq. (13) can be estimated using ordinary least squares or two-stage least squares.

However, because ξ follows the law of motion defined in Eq. (3), and because I need to estimate

parameters within that process, an alternative approach is needed.

For clarity, let yjt = ln(sjt)− ln(s0t) be the left-hand side of Eq. (13). Given this, and plugging

33

in the ξ law of motion, Eq. (13), can be re-written as

yjt = Xjtβ + αpjt + Λjt + ρξjt−1 + g(aj,t;µ) + ηjt (14)

In order to estimate the parameters of the model, I quasi-first-difference this model, by sub-

tracting ρyjt−1 from yjt, giving

yjt − ρyjt−1 = (Xjt−ρXjt−1)β + α(pjt − ρpjt−1) + (Λjt − Λjt−1) + g(aj,t;µ) + ηjt (15)

I estimate Eq. (15) using non-linear least squares (NLLS). In estimating the demand model, Λjt

is calculated using forward simulation.24. Finally, to estimate the effect of various types of updates

(according to the two update classification approaches discussed in Section 4.3), I define g(aj,t;µ)

to be a linear sum of dummy variables, such as:

g(aj,t;µ) = µBF 1(aj,t = Bug Fix)− µF 1(aj,t = Feature)

Non-linear Price Disutility The model assumes that price has a linear effect on a consumer’s

utility. This is not necessarily the case. Anecdotal evidence suggests that while consumers may

strongly dislike paying for an app, they may not be highly price sensitive conditional on paying

for an app. In light of these concerns, I consider three specifications of pjt when I estimate the

model in order to account for any possible non-linearities in consumers’ price sensitivity. The first

specification includes the price pjt of the app, and the second specification uses an indicator variable

for whether the price is greater than zero or not. Specification three includes both the app’s price,

and the “paid” indicator.

Timing and Endogeneity As discussed in Section 2, Apple maintains a strict review process for

all app updates. This process creates a delay between the creation of the update (and its submission

to Apple), and the release of the update to consumers. Based on conversations with developers,

this process took about a week on average during my sample period. Because I aggregate my data

to the week level, I assume that the decision of whether, and if so, how, to update an app is made

24This process is discussed in more details in Appendix D

34

prior to the realization of ηjt. That is, ηjt is assumed to be independent of period-t updating

decisions.

Price changes, however, can be made independently from app updates, and are not subject to

review, so the standard price endogeneity concern exists. This is dealt with using a two-stage non-

linear least squares approach, where period t prices are predicted in a first-stage regression using

current and one-period lagged covariates.25 This is similar to the approach taken in Doraszelski,

Lewis, and Pakes (2016).

5.2 Fixed Costs Estimation

I estimate the app updating model using a forward-simulation approach, as in Bajari, Benkard,

and Levin (2007), henceforth BBL. BBL propose a two-stage estimator. In the first stage, state

transition probabilities and the conditional choice probabilities for firms’ updating decisions are

estimated. These are then used to approximate the firms’ value functions. In the second stage, the

approximated value functions are used to estimate the dynamic parameters of the model.

First Stage In the first stage of the supply estimation, I estimate the state transition probabilities

for the state variables that vary over time, estimate a reduced form model for approximating apps’

revenues, and estimate reduced form policy functions for apps’ updating decisions. Table 5 provides

a list of state variables in the model, and a description of their evolution process.

Following BBL, I rewrite Eq. (8) to express the value function as a linear function of the

25More precisely, let the set of covariates Xjt = (X1
jt, X

2
jt) where X1 consists of variables that vary over time for

a given app, and the elements of X2 do not. The first stage regression used is pjt = γ0Xjt + γ2X
1
jt + εjt.

35

Table 5: State Variables

State Variable Evolution Level

Paid (i.e., 1(p > 0)) Fixed Firm-level
Retail Price Fixed Firm-level
IAP Fixed Firm-level
Ad Fixed Firm-level
Subscription Fixed Firm-level
Download Size AR-1, when updated Firm-level
Last-period Update Status Firm’s action Firm-level
Competitors’ Last-period Update Statuses Competitors’ actions Firm-level
ξj Eq. (3) Firm-level
ξ−j Eq. (3) Firm-level
Number of Firms Fixed Market-level
Market Average Download Size (See note) Market-level

The average download size for the market is computed as the average of the download sizes for all
apps in the market. Those download sizes follow an AR-1 process, changing only when a given app
has been updated.

parameters to be estimated.

V (Sjt|σj , σ−j) =Ej,σj ,σ−j

∞∑
t=0

δtRj(aj,t, Sjt)

−θBFEj,σj ,σ−j
∞∑
t=0

δt1(ajt = Bug Fix)

−θFEj,σj ,σ−j
∞∑
t=0

δt1(ajt = Feature)

+θεEj,σj ,σ−j

∞∑
t=0

δtεjt(ajt)

=Rj,σj ,σ−j − θBFFBugFix
j,σj ,σ−j

− θFFFeature
j,σj ,σ−j + θεεj,σj ,σ−j

(16)

As discussed in Section 3, a structural model of the intensive margin of demand cannot be

reliably estimated due to limited data availability. Thus, it is not possible to develop a structural

model for app j’s revenue, Rj(Sk,j ; θ
D), since many apps will depend on intensive- as well as

extensive-margin demand for revenue. Instead, I estimate a flexible model of revenue on the current

state and a large number of additional covariates that are each a function of the current state.26

Using the results of this model I am able to predict the revenue an app will earn given the state,

26Revenue data for the firms is calculated using the Top Grossing ranking list. See Section 4.2 for more details.

36

and this prediction is used in the supply estimation. Thus, revenue is treated as observed in the

estimation procedure. Letting R̂(Sk,j , θ
R) represent the estimated reduced form revenue model, the

value function used in estimating this model is

V (Sjt|σj , σ−j) = R̂j,σj ,σ−j − θBFFBugFix
j,σj ,σ−j

− θFFFeature
j,σj ,σ−j + θεεj,σj ,σ−j (17)

where R̂j,σj ,σ−j is equivalent to calculating Rj,σj ,σ−j using the reduced form revenue model in place

of a full structural model of revenue.

As outlined in BBL, the linearity of the firms’ value functions in θ = (θBF , θF , θε) significantly

reduces the computational burden of estimating this model, because it is only necessary to calculate

the value functions once, as opposed to re-calculating the values for each candidate parameter

during the optimization process. I calculate approximations of R, FBF , F F , and ε using forward

simulation.

Given the estimated policy functions and the reduced form revenue model, I use the following

process to calculate a single simulated path for R, FBF , F F , and ε. In these simulations I assume

the discount factor δ = 0.95.

1. Initialize R, FBF , F F , and ε equal to 0.

2. Given the state, calculate the conditional choice probabilities (CCPs) for all firms in the

market, and for each firm select an action based on that firm’s set of CCPs. FBF or F F are

updated as appropriate (dependent on the chosen action for firm j), as well as ε.

3. Update the state variables to reflect changes due to the firms’ actions.

4. Given the updated state, calculate the firms’ revenues using the revenue model R̃ and update

the value of R.

5. Repeat steps 2-4 for 50 periods.

I then repeat this process for a total of 250 simulations, and average across those 250 simulated

paths. I conduct this process for each observed initial state, and for each alternative updating

choice a firm in each observed state could have made.

37

Stage 2 Given the results of Stage 1, I estimate the dynamic parameters (θBF , θF , θε) using a

maximum likelihood estimator. In particular, since ε is assumed to be i.i.d. Type I Extreme Value,

I can express the optimal strategy for j as Eq. (9), which I replicate below.

P σj (a, Sj , σ−j) =
exp

(
νσj (a, Sj , σ−j)

)
∑

a′∈A exp
(
νσj (a′, Sj , σ−j)

)
where νj(·) is the choice-specific value function is

νσj (a, Sj , σ−j) =
1

θε
(
π(a, Sj) + βE

[
V σ
j (S′j)|Sj , aj

])
Denoting this function when app j is in state Sj as vj(a), I can construct the loglikelihood function:

lnL(θ) =
∑
t

∑
t

(∑
a∈A

1(ajt = a)νj(a)− ln

(∑
a∈A

exp (νj(a))

))
(18)

I then find the set of dynamic parameters (θBF , θF , θε) that maximize this function.

6 Estimation Results

6.1 Demand Results

In this section, I discuss the results of estimating the demand model presented in Section 3.2. In

Table 6 I consider the relationship between an app’s monetization strategy and (extensive-margin)

consumer demand, and in Table 7 I consider how updates affect consumer demand, and whether

consumers respond differentially to different types of updates.

Monetization To understand how the price of an app relates to the demand for that app, I

consider three different specifications of the model, the results of which are presented in Table 6.

In column (1) I include only the price of the app (which in approximately half of the observations

is equal to $0.00). In column (2), I exclude the price of an app, and instead use a dummy variable,

Paid, to indicate whether the app is priced above zero or not. Finally, in column (3), I include

both the price and the Paid indicator.

As expected, I estimate a negative relationship between price and demand. Further, comparing

38

Table 6: Effect of Price on Demand

(1) (2) (3) (4) (5)

Update 0.1920*** 0.1681*** 0.1811*** 0.1932*** 0.1809***
(0.0360) (0.0360) (0.0359) (0.0360) (0.0360)

Price -0.0653*** -0.0537*** -0.0724*** -0.0591***
(0.0050) (0.0052) (0.0063) (0.0065)

Paid -1.3227*** -0.9064*** -0.9738***
(0.1240) (0.1281) (0.1277)

In-App Purchase 0.6382*** 0.1282 0.1114 0.5985*** 0.0426
(0.1188) (0.1431) (0.1394) (0.1206) (0.1399)

Advertisements 0.7313** 0.7458** 0.7002** 0.7242** 0.6899**
(0.3286) (0.3358) (0.3263) (0.3288) (0.3268)

Subscription -0.4678*** -0.5404*** -0.6016*** -0.4798*** -0.6235***
(0.1283) (0.1323) (0.1288) (0.1286) (0.1291)

ρ 0.7599*** 0.7648*** 0.7584*** 0.7598*** 0.7586***
(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)

Observations are app-weeks. Standard errors are in parentheses.
Regressions also include controls for the month, year, market, iOS, version, the age
of the app (in weeks), and the squared age of the app.
* p < 0.10, ** p < 0.05, *** p ¡ 0.01

specifications (1) and (2), I find that consumers are far more sensitive to an increase in price from

free to $0.99 (the minimum, non-zero price allowed by the platform), than to an equivalent increase

in price from any initial, non-zero price. That is, a developer can expect to lose significantly more

potential sales by changing their price from $0.00 to $0.99, than by increasing their price from,

for example, $4.99 to $5.99. Specification (3) captures both the consumer response to the price of

a product, and the response to whether the product is free or not. Consistent with the findings

from columns (1) and (2), the coefficient on the paid indicator in specification (3) is much larger in

magnitude than the coefficient on price. This again suggests a non-linear effect of price on utility.

Columns (4) and (5) of Table 6 show the result of estimating the model using non-linear two-

stage least squares (NLTSLS), where I instrument for prices using lagged covariates. The price

coefficient in specifications (4) and (5) are larger in magnitude compared to their NLLS analogues

(specifications (1) and (3)), though the disparity between the NLLS and NLTSLS results are smaller

than the difference between the price and price/paid specifications, which suggests that the non-

linearity in price sensitivity is the primary cause for bias in specification (1).

Given these estimates, it is clear that consumers are highly reticent to pay for an app, but that

39

conditional on paying, they are not particularly price sensitive. Using the results from specification

(5), we can see that the additional disutility of increasing the price from $0.00 to $0.99 is approx-

imately the same as increasing the price from $0.99 to $17.99. Specification (5) is the preferred

specification from these results, as it is able to capture this non-linearity in price sensitivity, and I

use variations of specification (5) in what follows.

Finally, I find that the inclusion of subscriptions in an app is associated with lower utility.

IAPs on the other hand, do not have a statistically significant relationship with utility, which may

be due to the relatively limited information consumers receive about the inclusion of and content

associated with IAPs. Advertisements appear to have a positive relationship with sales, however

with only 11 apps across 4 markets displaying ads, it is possible that this is estimated parameter

is picking up on app-specific attributes.

Interpreting the monetization estimates as causal effects requires abstracting away from devel-

opers’ selection into a particular method (or methods) of monetization—which is unlikely to be a

reasonable abstraction. Additionally, the potential bias caused by this selection effect is difficult

to sign. For example, it could be that apps that use ads are on average lower quality than apps

that use IAPs because viewing an ad does not require the consumer to take an explicit action

(purchasing the IAP). On the other hand, as noted above, it could be that ad-financed apps are

on average higher quality because consumers are more likely to spend extended periods of time

using higher-quality products and therefore monetizing the time spent viewing is optimal relative

to trying to sell product add-ons to the consumer. Since apps rarely change their monetization

strategy—i.e., which types of monetization they use—understanding this selection effect would re-

quire modeling apps’ entry decisions into the available forms of monetization, which is beyond the

scope of this project, and is left to future work.

Updates Table 7 shows the results of estimating the demand model under five different classifi-

cations of updates. Across all specifications, I find that updates have a positive, and statistically

significant effect on demand, and that there is a non-zero correlation in the quality of apps over

time, with the estimates of ρ all falling around 0.758. Thus, while updates don’t have an enormous

direct effect on an app’s quality, the effect of an update persists, via the ξjt AR-1 process, across

multiple periods. These results are consistent with the finding in Foerderer and Heinzl (2017),

40

Table 7: Effect of Updates on Demand

(1) (2) (3) (4) (5)

Update 0.1809***
(0.0360)

Update, Paid 0.1256**
(0.0551)

Update, Free 0.2207***
(0.0468)

Major 0.5962***
(0.1277)

Point 0.1487***
(0.0372)

Feature 0.1580***
(0.0521)

Bug Fix 0.1988***
(0.0464)

Major, Feature 0.5168***
(0.1600)

Major, Bug Fix 0.7338***
(0.2103)

Point, Feature 0.1139**
(0.0551)

Point, Bug Fix 0.1741***
(0.0475)

Price -0.0591*** -0.0585*** -0.0593*** -0.0590*** -0.0593***
(0.0065) (0.0065) (0.0065) (0.0065) (0.0065)

Paid -0.9738*** -0.9412*** -0.9732*** -0.9742*** -0.9739***
(0.1277) (0.1299) (0.1277) (0.1276) (0.1277)

In-App Purchase 0.0426 0.0434 0.0367 0.0429 0.0366
(0.1399) (0.1398) (0.1399) (0.1399) (0.1399)

Advertisements 0.6899** 0.6841** 0.6892** 0.6827** 0.6730**
(0.3268) (0.3265) (0.3268) (0.3269) (0.3271)

Subscription -0.6235*** -0.6328*** -0.6223*** -0.6244*** -0.6237***
(0.1291) (0.1292) (0.1292) (0.1291) (0.1292)

ρ 0.7586*** 0.7584*** 0.7587*** 0.7586*** 0.7587***
(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)

Observations are app-weeks. Standard errors are in parentheses.
Regressions also include the controls for download size, month, year, market, iOS,
version, the age of the app (in weeks), and the squared age of the app.
* p < 0.10, ** p < 0.05, *** p < 0.01

41

Ghose and Han (2014), and Comino, Manenti, and Mariuzzo (2018) who all find evidence that

updates increase demand.

Column (1) shows this primary finding, that updates increase the demand for apps. In under to

better understand how updates affect demand, I consider a number of different classification meth-

ods for updates. The first is presented in column (2) of Table 7. In this case, I distinguish between

updates made by Paid and Free apps. While the estimated coefficients indicate that updates made

to Free apps have a larger effect that updates to Paid apps, I am unable to conclude that Paid and

Free apps have a statistically significant difference in the effect of updates on demand.27

In column (3), I employ the Version Number classification approach described in Section 4.3.

This method classifies an update as a Major update when the the first digit of an app’s version

number changes (e.g., 2.5 to 3.0), and as a Point update when any subsequent number in the version

number changes (e.g., 2.5 to 2.6). I find that Major updates have an approximately four times bigger

effect on demand than Point updates do, though both types of updates increase demand.28 However,

it’s unclear how to interpret this finding. This is because Major updates conflate two effects.

On one hand, Major updates ostensibly represent larger, more important updates to software, as

convention has traditionally dictated that a change in the first digit signifies a major revision of

the product. However, developers use version numbers to both track the development of an app,

and as a marketing tool. For example, announcing a “Brand new version 5.0!” can increase media

coverage and word-of-mouth. Furthermore, through the Release Notes classification approach, I

find that 36.7% of Major updates in my sample only make minor changes to the product. Thus, I

cannot distinguish whether consumers respond more to Major than Minor updates because of the

content of the update or if they are merely responding to the fact that there has been a (possibly

high profile) update.

In order to better understand whether consumers are responding to the content of an update,

I next the model with updates categorized based solely on their content, using the Release Notes

classification method discussed in Section 4.3. I present the results of this specification in column

(4) of Table 7. Under this classification approach, updates that introduce new features or significant

changes are labeled as a Feature update, and updates that make only minor adjustments are labeled

27Using a Wald test, I cannot reject the hypothesis that updates from Paid and Free app have the same effect at
the 10% level (p = 0.185).

28This difference is statistically significant at the 1% level (p = 0.001).

42

as a Bug Fix update. While both Feature and Bug Fix updates increase demand, I fail to find

evidence that Feature and Bug Fix updates have different effects on demand.29

Finally, I interact the Version Number and Release Notes classification systems. I present

the results of estimating the model with this interaction in column (5) of Table 7. The results

in this case reflect that of the last two. Namely, Major updates, regardless of whether they are

Feature or Bug Fix updates, have a larger effect on demand than Point updates, again regardless

of whether they add features or fix bugs. Within the Major and Point classifications, there is

no statistically significant difference between Feature and Bug Fix updates. However, there is

a statistically significant difference between each type of Major update and each type of Point

update.30

One possible explanation for the finding that consumers do not differentiate based on the content

of an update is that consumers may not have a strong understanding of the quality of an app. If

consumers are poorly informed about the quality of a product, then the specifics of how it has been

updated may be uninformative about the degree to which overall quality has changed. In this case,

it may be appropriate to think of apps as experience goods, à la Nelson (1970), where consumers

make purchase decisions based on an initial belief about the quality of the product, but do not

learn the true quality of the product until they have had a chance to use it.31 Of course, other

explanations—e.g., rational inattention to the details of updates—are possible. Whether and how

consumers respond to Feature versus Bug Fix updates on the intensive margin remains an open

research question—though, one that is currently stymied by significant data collection challenges.

6.2 Fixed Cost Results

Table 8 shows the results of estimating the dynamic app updating model. The cost of a Bug Fix

update, θBF , is $3,355.97, and the cost of a Feature update is 28% higher at $4,279.17. While

29The difference is not statistically significant at the 10% or lower level (p=0.543).
30As in previous cases, I use a Wald test to test for the equality of the coefficients. The resulting p-values are:

p=0.410 for Major-Feature vs. Major-Bug Fix, p=0.017 for Major-Feature vs. Point-Feature, p=0.039 for Major-
Feature vs. Point-Bug Fix, p=0.004 for Major-Bug Fix vs. Point-Feature, p=0.009 for Major-Bug Fix vs Point-Bug
Fix, and p=0.391 for Point-Feature vs Point-Bug Fix.

31This hypothesis speaks to a primary concern of developers, that consumers are not informed enough about the
products they are purchasing, exemplified by the developer Kevin Hoctor, who notes, “The limited information a
prospective customer has prior to a purchase is one of the problems with Apple’s App Store. People are supposed
to fork over money for apps, but only get to see five screenshots and a few paragraphs of text before making a
decision—that just doesn’t cut it.” (Hoctor, 2013)

43

Table 8: Dynamic Parameter Estimates

θBF 3,355.97***
(276.43)

θF 4,279.17***
(412.89)

θε 383.45**
(173.18)

Bootstrapped standard errors are reported in parenthesis.

these costs may at first seem small, it’s important to view them in context. Across the sample,

the average weekly gross revenue is $1,436.55, with the median slightly lower at $1,217.00. Thus,

a Minor update costs just over two weeks of revenue, and a Major update costs approximately

the same as 3 weeks of revenue. Of course, as shown in Section 6.1, updates increase demand,

so developers likely earn their revenue back in less time than the average revenue figures would

suggest.

6.3 Discussion

Taken together, the demand and supply results appear to present a contradiction. I find that

Feature updates are more expensive to produce than Bug Fix updates (Table 8), while at the same

time failing to find evidence that Feature and Bug Fix updates have different effects on demand

(Table 7). Furthermore, developers produce a relatively large number of Feature updates, as shown

in Table 2b. The fact that developers do in fact regularly produce Feature updates suggests that

the different types of updates may indeed serve different strategic purposes, but that those purposes

are not focused on spurring new extensive margin demand. Instead, Feature updates may have an

outsized effect on consumer behavior through the intensive margin of demand. That is, Feature

updates may increase the likelihood that a consumer uses an already-owned app in a given period

by more than a Bug Fix update, which might in turn result in an increased stream of revenue to the

developer via use monetization. This possibility is consistent with the idea that consumers’ failure

to differentiate between different types of updates may result from an ex-ante lack of information

about the full functionality and user experience of an app, but that once they have had time to use

the product they learn the true quality of the product, and as a result become more responsive to

more substantial improvements to the product.

44

7 Counterfactual Analysis

Having constructed and estimated a model of consumers’ demand for apps and developers’ app

updating decisions, I now return to my primary research question: How the digitization of consumer

goods—characterized by the addition of two new strategic tools—affects firms’ updating behavior.

In particular, I investigate how both the frequency and content of updates changes in the presence

of these tools. Since these tools have been available to developers since the introduction of the App

Store, I am unable to take advantage of some form of a natural experiment in order to answer this

question. Instead, I conduct counterfactual simulations wherein I “turn off” these two aspects of

digitization and simulate how developers would choose to update in their absence. The results of

this counterfactual exercise serve as a proxy for how developers would behave in a “traditional”

durable goods industry. I compare the results of this counterfactual exercise to observed behavior

in order to estimate an effect of digitization on firms’ updating behavior.

Model Restrictions In practice, turning off the two aspects of digitization I study means making

two specific restrictions in the model. First, I artificially restrict the revenue developers can earn

to revenue earned via the extensive, or purchase, margin of demand. Revenue from advertisements,

subscriptions, and in-app purchases is all fixed at zero in the counterfactual regime. Put another

way, firms no longer consider the effect of updates on consumers’ intensive margin behavior. Second,

I remove the ability for consumers to receive updates to apps they have already purchased.

In terms of the model developed in Section 3, these two restrictions are represented by first

changing the firm’s revenue function, Rj from

Rj(aj,t, Sj,t) =

Direct Sales Revenue︷ ︸︸ ︷
pRetailj sextj,t Mm,t + (Intensive Margin Revenue)

to

Rcounterj (aj,t, Sj,t) =

Direct Sales Revenue︷ ︸︸ ︷
pRetailj sextj,t Mmt

(19)

and by changing consumers lifetime expected utility from purchasing an app from

Λijt = E

[∞∑
τ=t+1

δτ−t ln
(

1 + eXjτβ+ξjτ
)]

45

where consumers have expectations over future updates and future consumer-app match values, to

Λcounterijt =
∞∑

τ=t+1

δτ−t ln
(

1 + eXjτβ+ξjτ
)

(20)

where the consumers’ expectations are only over future consumer-app match values, and not over

future updates, and ξjτ is not affected by the developer’s updating decisions in periods τ ′ > τ .

Solving the Model and Forward Simulation For computational reasons, I assume firms make

static product updating decisions. That is, in the counterfactual simulations, firms do not consider

how a decision in period t will affect the state of the market in period t + 1. Because of this, I

expect that this counterfactual will understate the level of updating in the counterfactual regime,

and thus will result in my potentially overstating the effect of digitization on the frequency of

updating. However, the results should still give a clear sense of the direction of the effect.

Accounting for Counterfactual Prices It is necessary to account for the fact that prices are

likely to differ between the observed and counterfactual regimes. As discussed in Section 3.3, my

model of app updating focuses on developers’ product updating decisions, and assumes that prices

are fixed. In order to account for the fact that prices will differ in the counterfactual regime, I

assume firms play a two-stage game, where in the first stage they set prices, and in the second

stage they engage in the infinite-horizon updating game defined in Section 3.3. In practice, I solve

this two-stage game backwards, first by calculating each firms’ value under each possible pricing

equilibrium, and then by determining the Nash equilibrium in the first-stage pricing game. In

order to make this exercise computationally feasible I restrict firms to selecting a price from the

set {0.99, 9.99, 19.99, 29.99, 39.99}.

Counterfactual Results I simulate updating in six markets, each with between three and six

apps. Table 9 presents the unconditional likelihood of an app in the given market updating in a given

period for both the counterfactual regime and the observed, digital regime. The “Counterfactual”

columns present the frequency of updates when products are treated as traditional, non-digital

consumer goods, and the “Digital” column presents the frequency of app updates under digitization.

For each type of updating, Overall, Bug Fix updates, and Feature updates, I present the difference

46

Table 9: Static Counterfactual Results

Overall Updates Bug Fix Updates Feature Updates Feature Conditional on Updating
Market Counterfactual Digital ∆ Counterfactual Digital ∆ Counterfactual Digital ∆ Counterfactual Digital ∆

1 10.6% 13.3% 2.7pp 4.1% 4.1% 0.0pp 6.5% 9.2% 2.7pp 0.61 0.69 0.08
6 12.4% 19.6% 7.2pp 5.1% 6.9% 1.8pp 7.3% 12.7% 5.4pp 0.59 0.65 0.06
9 9.8% 16.6% 6.8pp 4.4% 7.3% 2.9pp 5.4% 9.3% 3.9pp 0.55 0.56 0.01

18 8.1% 6.3% -1.8pp 5.7% 3.6% -2.1pp 2.4% 2.7% 0.3pp 0.30 0.43 0.13
19 7.5% 11.4% 3.9pp 6.1% 8.3% 2.2pp 1.4% 3.1% 1.7pp 0.19 0.27 0.09
20 5.7% 7.5% 1.8pp 2.3% 3.8% 1.5pp 3.4% 3.7% 0.3pp 0.60 0.49 -0.10

between the level of updating for digital products and traditional products, ∆. Positive values of

∆ indicate an increased level of updating in the Digital regime compared to the Counterfactual

regime.

I find that overall updating is higher under digitization in all but one market. These increases

cover a range of 1.8 to 7.2 percentage points, representing an increase in the rate of updating

of between 25% and 70% relative to a baseline of the “non-digital” counterfactual level. These

increases are driven by an increase in both Feature and Bug Fix updates, though the rate of Feature

updates increases by slightly more than Bug Fix updates. Indeed, in five of the six markets, the

chance of a given update being a Feature update increases by between 10% and 45%. That said,

as with the increase in the frequency of updating, I find that in one of the simulated markets the

relative frequency of Feature updates falls.

These results speak to the importance of accounting for intensive-margin behavior when study-

ing both digital and digitizing industries. The fact that digitization is found to result in a 25%

to 70% increase in the rate of product innovation shows that any analysis of firm behavior in

this industry must account for the intensive-margin incentives firms face. This presents both new

opportunities—a more nuanced understanding of non-price competition—and new difficulties—

data on relevant intensive-margin prices and quantities can be difficult to collect—for economic

analysis.

8 Conclusion

As consumer durable goods undergo a process of digitization, firms gain access to new strategic

tools, including the abilities to monetize the use of their products and to continue to update their

product after a consumer has purchased it. I find that the availability of these two tools leads to

47

more frequent product updating in Apple’s App Store marketplace, and, in general, a higher relative

frequency of feature-adding updates compared to more incremental, bug-fixing updates. There is,

however, wide variation in these results across markets, which suggests that the specifics of an

individual market play an important role in determining how digitization affects firms’ incentives

to provide more substantial updates, and is an area for future research. Additionally, this paper also

identifies a possible concern as products become increasingly digital. My finding that consumers

do not differentiate between Feature and Bug Fix updates when making their extensive-margin

(purchase) decisions suggests that the saliency of product functionality and, more generally, quality

will be an important issue for firms selling digital or partially digital products.

In answering the question of how digitization affects firms’ updating behavior, I have contributed

a new method for defining markets, which allows economists to use high-dimensional product

descriptions (e.g., text, images) in order to group products into markets. In addition, this work

has contributed to a growing body of research that uses text as a primary form of data.

As an increasing number of consumer durable good industries undergo digitization it is impor-

tant to understand how the changes brought on by digitization affect firm behavior. While the

effects estimated in this paper are specific to the smartphone application industry, the qualitative

results are relevant beyond the App Store. We should expect to see more frequent product updating

via digital updates in other industries, an expectation that is already coming to fruition in some

markets, such as in the market for electronic cars, or, as noted by the quote that began this paper,

in the television set industry.

As for future economic research on this and related industries, there remains substantial work

to be done on understanding consumer behavior on the intensive margin of demand (i.e., product

use behavior). Understanding how consumers behave after they have purchased a product will

be increasingly important as more and more products earn a flow revenue from product use via

advertisements, subscriptions, and within-product micro-transactions.

48

References

Anderson, Simon P., André de Palma, and Jacques-François Thisse. 1992. Discrete Choice Theory

of Product Differentiation. The MIT Press. 60

Apple. 2016. “Apple - WWDC 2016 Keynote.” URL https://www.youtube.com/watch?v=

n5jXg{_}NNiCA. 3

———. 2017. “Developer earnings from the App Store top $70 billion.” URL https://www.apple.

com/newsroom/2017/06/developer-earnings-from-the-app-store-top-70-billion/. 3

Aryal, Gaurab, Federico Ciliberto, and Benjamin T. Leyden. 2019. “Public Communication and

Tacit Collusion in the Airline Industry.” 6

Bajari, Patrick, Lanier Benkard, and Jonathan Levin. 2007. “Estimating dynamic models of im-

perfect competition b.” Econometrica 75 (5):1331–1370. 35

Bajari, Patrick, Jeremy T. Fox, and Stephen P. Ryan. 2008. “Evaluating wireless carrier con-

solidation using semiparametric demand estimation.” Quantitative Marketing and Economics

6 (4):299–338. 19

Baker, Scott R., Nicholas Bloom, and Steven J. Davis. 2016. “Measuring Economic Policy Uncer-

tainty.” The Quarterly Journal of Economics 131 (4):1593–1636. 6

Berry, Steven T. 1994. “Estimating Discrete-Choice Models of Product Differentiation.” The RAND

Journal of Economics 25 (2):242. 33

Berry, Steven T., James Levinsohn, and Ariel Pakes. 1995. “Automobile Prices in Market Equilib-

rium.” Econometrica 63 (4):841–890. 10

Bresnahan, T, J Orsini, and Pl Yin. 2014. “Platform Choice By Mobile Apps Developers.” NBER

working paper . 10

Bresnahan, Timothy, Xing Li, and Pai-ling Yin. 2016. “Paying Incumbents and Customers to Enter

an Industry: Buying Downloads.” Working Paper 94305. 10, 20

49

https://www.youtube.com/watch?v=n5jXg{_}NNiCA
https://www.youtube.com/watch?v=n5jXg{_}NNiCA
https://www.apple.com/newsroom/2017/06/developer-earnings-from-the-app-store-top-70-billion/
https://www.apple.com/newsroom/2017/06/developer-earnings-from-the-app-store-top-70-billion/

Brynjolfsson, Erik, Yu (Jeffrey) Hu, and Michael D. Smith. 2003. “Consumer Surplus in the

Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers.”

Management Science 49 (11):1580–1596. 19

———. 2010. “The Longer Tail: The Changing Shape of Amazon’s Sales Distribution Curve.”

Social Science Research Network (September):1–13. 21

Chevalier, Judith and Austan Goolsbee. 2003. “Measuring Prices and Price Competition Online:

Amazon.com and BarnesandNoble.com.” Quantitative Marketing and Economics 1 (2):203–222.

19

Comino, Stefano, Fabio Maria Manenti, and Franco Mariuzzo. 2018. “Updates Management in

Mobile Applications: iTunes vs Google Play.” Journal of Economics & Management Strategy

(May):1–33. 10, 42

ComScore. 2016. “U.S. Smartphone Subscriber Market Share.” URL https://www.comscore.

com/Insights/Rankings/comScore-Reports-January-2016-US-Smartphone-Subscriber-

Market-Share. 8

Davis, Jason P, Yulia Muzyrya, and Pai-Ling Yin. 2014. “Experimentation Strategies and En-

trepreneurial Innovation: Inherited Market Differences in the iPhone Ecosystem.” INSEAD

Working Papers Collection (24):1–40. 10

Doraszelski, Ulrich, Gregory Lewis, and Ariel Pakes. 2016. “Just Starting Out: Learning and

Equilibrium in a New Market.” NBER Working Paper . 35

Doraszelski, Ulrich and Mark Satterthwaite. 2010. “Computable Markov-perfect industry dynam-

ics.” RAND Journal of Economics 41 (2):215–243. 16

Eizenberg, Alon. 2014. “Upstream innovation and product variety in the U.S. home PC market.”

Review of Economic Studies 81 (3):1003–1045. 5

Ericson, Richard and Ariel Pakes. 1995. “Markov-perfect industry dynamics: A framework for

empirical work.” The Review of Economic Studies 62 (1):53–82. 15

50

https://www.comscore.com/Insights/Rankings/comScore-Reports-January-2016-US-Smartphone-Subscriber-Market-Share
https://www.comscore.com/Insights/Rankings/comScore-Reports-January-2016-US-Smartphone-Subscriber-Market-Share
https://www.comscore.com/Insights/Rankings/comScore-Reports-January-2016-US-Smartphone-Subscriber-Market-Share

Ershov, Daniel. 2018. “The Effect of Consumer Search Costs on Entry and Quality in the Mobile

App Market.” 10, 19, 21

Evans, David S. 2011. “The antitrust economics of free.” Competition Policy International 7 (1):70–

89. 25

Fan, Ying. 2013. “Ownership Consolidation and Product Characteristics: A Study of the US Daily

Newspaper Market.” American Economic r 103 (5):1598–1628. 5

Foerderer, Jens and Armin Heinzl. 2017. “Product Updates: Attracting New Consumers versus

Alienating Existing Ones.” SSRN Electronic Journal URL https://www.ssrn.com/abstract=

2872205. 4, 40

Gandhi, Amit, Zhentong Lu, and Xiaoxia Shi. 2013. “Estimating Demand for Differentiated Prod-

ucts with Error in Market Shares.” 56

Gans, Joshua S. 2012. “Mobile Application Pricing.” :1–24. 10

Garg, R and Rahul Telang. 2012. “Estimating App Demand from Publicly Available Data.” Avail-

able at SSRN 1924044 37 (4):1–22. 19, 20

Gentzkow, Matthew, Bryan T. Kelly, and Matt Taddy. Forthcoming. “Text as Data.” Journal of

Economic Literature . 6

Ghose, A.a and S.P.b Han. 2014. “Estimating demand for mobile applications in the new economy.”

Management Science 60 (6):1470–1488. 10, 19, 20, 21, 27, 42

Goettler, Ronald L and Brett R Gordon. 2011. “Does AMD Spur Intel to Innovate More?” Journal

of Political Economy 119 (6):1141–1200. 5

Goode, Lauren. 2016. “Apple’s new subscription offerings are now available to App Store develop-

ers.” URL https://www.theverge.com/2016/9/2/12774758/apple-developers-app-store-

new-subscription-rules. 8

Gowrisankaran, Gautam and Marc Rysman. 2007. “Dynamics of Consumer Demand for New

Durable Goods.” Journal of Political Economy 120 (6):1173–1219. 4

51

https://www.ssrn.com/abstract=2872205
https://www.ssrn.com/abstract=2872205
https://www.theverge.com/2016/9/2/12774758/apple-developers-app-store-new-subscription-rules
https://www.theverge.com/2016/9/2/12774758/apple-developers-app-store-new-subscription-rules

Hoberg, Gerard and Gordon Phillips. 2016. “Text-Based Network Industries and Endogenous

Product Differentiation.” Journal of Political Economy 124 (5):1423–1465. URL http://www.

journals.uchicago.edu/doi/10.1086/688176. 6, 27

Hoctor, Kevin. 2013. “In-App Purchase - The Future is Here.” URL http://blog.hoctor.com/in-

app-purchase-the-future-is-here/. 43, 60

Honnibal, Matthew and Ines Montani. 2017. “spaCy 2: Natural language understanding with

Bloom embeddings, convolutional neural networks and incremental parsing.” To appear . 56

Kesler, Reinhold, Michael Kummer, and Patrick Schulte. 2017. “Access to User Data , Market

Power and Innovation in Online Markets: Evidence from the Mobile App Industry.” 14

Lambert, Fred. 2017. “Tesla pushes new Autopilot 2.0 update with truly ”silky smooth” control

algorithm.” 3

Lee, Robin S. 2013. “Vertical Integration and Exclusivity in Two-Sided Markets.” The American

Economic Review 103 (7):2960–3000. 5

Liu, Yongdong. 2017. “Mobile App Platform Choice.” :1–66. 10, 20

Matthews, Lee. 2015. “Tesla P85D software update reduces the car’s already insane 0-

60 time.” URL https://www.geek.com/apps/tesla-p85d-software-update-reduces-the-

cars-already-insane-0-60-time-1614741/. 3

Nekipelov, Denis, Minjung Park, and Yongdong Liu. 2013. “Timely versus quality innovation: The

case of Mobile Applications on iTunes and Google Play.” 10

Nelson, Phillip. 1970. “Information and Consumer Behavior.” Journal of Political Economy

78 (2):311–329. 43, 60

Newman, John M. 2015. “Antitrust in Zero-Price Markets: Foundations.” University of Pennsyl-

vania Law Review 164 (1). URL http://heinonline.org/HOL/Page?handle=hein.journals/

pnlr164{&}id=153{&}div={&}collection=. 26

Novikov, Andrei. 2018. “annoviko/pyclustering: pyclustering 0.8.2 release.” URL https://doi.

org/10.5281/zenodo.1491324. 28

52

http://www.journals.uchicago.edu/doi/10.1086/688176
http://www.journals.uchicago.edu/doi/10.1086/688176
http://blog.hoctor.com/in-app-purchase-the-future-is-here/
http://blog.hoctor.com/in-app-purchase-the-future-is-here/
https://www.geek.com/apps/tesla-p85d-software-update-reduces-the-cars-already-insane-0-60-time-1614741/
https://www.geek.com/apps/tesla-p85d-software-update-reduces-the-cars-already-insane-0-60-time-1614741/
http://heinonline.org/HOL/Page?handle=hein.journals/pnlr164{&}id=153{&}div={&}collection=
http://heinonline.org/HOL/Page?handle=hein.journals/pnlr164{&}id=153{&}div={&}collection=
https://doi.org/10.5281/zenodo.1491324
https://doi.org/10.5281/zenodo.1491324

Patel, Nilay. 2019. “Taking the smarts out of smart TVs would make them more expen-

sive.” URL https://www.theverge.com/2019/1/7/18172397/airplay-2-homekit-vizio-

tv-bill-baxter-interview-vergecast-ces-2019. 2

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay. 2011. “Scikit-learn: Machine Learning in Python.” Journal of Machine

Learning Research 12:2825–2830. 57

Pelleg, Dau and Andrew Moore. 2000. “X-means: Extending K-means with Efficient Estimation of

the Number of Clusters.” In In Proceedings of the 17th International Conf. on Machine Learning.

Morgan Kaufmann, 727–734. 28, 58

Perry, Charles. 2015. “The Shape of the App Store.” URL dazeend.org/2015/01/the-shape-

of-the-app-store/28/. 19

Quan, Thomas W. and Kevin R. Williams. 2015. “Product variety, across market demand hetero-

geneity and the value of online retail.” Working Paper November. 56

Rousseeuw, Peter J. 1987. “Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis.” Journal of Computational and Applied Mathematics 20 (C):53–65. 28

Spencer, Graham. 2015. “A Beginner’s Guide to App Store Pricing Tiers.” URL https://www.

macstories.net/stories/a-beginners-guide-to-app-store-pricing-tiers/. 8

Sweeting, Andrew. 2013. “Dynamic Product Positioning in Differentiated Product Markets: The

Effect of Fees for Musical Performance Rights on the Commercial Radio Industry.” Econometrica

81 (5):1763–1803. 5, 16

Wu, Alice H. 2017. “Gender Stereotyping in Academia : Evidence from Economics Job Market

Rumors Forum.” (August). 6

Yin, Pai Ling, Jason P. Davis, and Yulia Muzyrya. 2014. “Entrepreneurial innovation: Killer apps

in the iPhone Ecosystem.” American Economic Review 104 (5):255–259. 10

53

https://www.theverge.com/2019/1/7/18172397/airplay-2-homekit-vizio-tv-bill-baxter-interview-vergecast-ces-2019
https://www.theverge.com/2019/1/7/18172397/airplay-2-homekit-vizio-tv-bill-baxter-interview-vergecast-ces-2019
dazeend.org/2015/01/the-shape-of-the-app-store/28/
dazeend.org/2015/01/the-shape-of-the-app-store/28/
https://www.macstories.net/stories/a-beginners-guide-to-app-store-pricing-tiers/
https://www.macstories.net/stories/a-beginners-guide-to-app-store-pricing-tiers/

Appendices

A Sample Restrictions

A.1 Companion versus Product Apps

Apps can be classified as either companion or product apps. Companion apps are those that work

in conjunction with an existing product or service. For example, the American Airways app, which

offers detailed flight information, flight check-in, and a consumer’s boarding pass on the day of the

flight, serves as a companion to American Airways flights. On its own, the app provides no value.

Similarly, the brick-and-mortar retailer Target’s app serves as a companion to shopping at Target

either in the store, where it provides information about what aisle certain products are available

in, or online.

Product apps are those that are themselves the primary product being offered. The weather app,

Dark Sky, which provides forecasts and weather radar, is produced as a standalone product. This

distinction is important, because while product apps can reasonably be expected to be developed

in a standard profit-maximizing way, there is no such expectation for a companion app as it is

just a (possibly small) piece of a much larger product offering. Modeling the pricing and updating

of a companion app would require modeling the larger product offering. For example, decisions

made regarding Target’s apps could be viewed as profit maximizing from the perspective of Target’s

overall retail operation, but directly observing the revenue collected through the app would likely

not rationalize the costs of development. Further, from a demand perspective, consumer preferences

for a companion app will be highly dependent on products, pricing, and competition outside of the

app industry—demand for companion apps is largely, if not entirely, a derived demand.

A.2 Accounting for Abandoned Apps

A second issue in defining a sample in the App Store stems from the fact that, as discussed in

Section 2, entry into the App Store is relatively inexpensive. Thus, many apps have such a low

level of sales (never, or rarely achieving a sales ranking associated with non-zero sales) that it is

hard to consider them as behaving strategically in the marketplace. It is important to re-emphasize

the fact that, since app development primarily consists of fixed costs, developers face minimal costs

54

Figure 10: Distribution of Productivity Apps’ Best Ranking

in keeping an abandoned product in the store. Unlike the production of physical goods, continuing

to sell an abandoned, or no longer actively developed app does not, in general, result in continued

variable expenses.

Considering, for a moment, only the apps in the Productivity category, only 10.6% ever reach

a sales ranking better than 500th in the sample period, and only 3.2% ever reach a ranking better

than 200. Fig. 10 shows the distribution of apps’ best rankings for those that reach a ranking of at

least 500 on at least one occasion. However, even among apps that do reach a particular ranking

threshold, few apps are able to repeatedly maintain sales above that threshold. Fig. 11 shows that

among apps that achieve at least a ranking of 200, nearly all spend less than 10% of the sample

period at or exceeding that threshold.

There are several possible reasons for why so many apps enter the store, yet never achieve a

meaningfully high ranking. One possibility is that there is a high degree of randomness in app

store success, and so the nearly 90% of Productivity apps that entered the store but never reached

a ranking of at least 500 had an ex-ante positive expected profit, but upon entry, “drew” a bad

shock. Note that this disparity between expected and realized outcomes could be due to a high

level of volatility in the marketplace, or to a general high degree of uncertainty regarding consumer

demand on the part of the developer. Another possibility, which explains some of the consistently

low-ranking apps in the store, though certainly not all, is that many apps are hobbies or passion

projects for developers. That is, some apps may only exist to scratch a particular developer’s own

itch.

55

Figure 11: Persistence Above Ranking Threshold of 200

(a) Periods ranked above 200
(b) Periods ranked above 200 (10th percentile and
above.)

This issue would be especially problematic when estimating the structural model in Section 3,

because keeping abandoned apps in the sample would introduce an enormous number of zeroes in

the market-share data, which is inconsistent with the logit demand model developed in Section 3.2.

While methods do exist for allowing this, they generally require an assumption of sampling error in

shares in order to explain zero-shares (see Gandhi, Lu, and Shi (2013)). This is inappropriate in the

current context, as many products on the App Store actually do have zero sales throughout much

of, and in many cases, all of, the sample period.32 I employ the restrictions outlined in Section 4

to limit my sample to apps that are actively competing on the platform, and that do not face this

massive zero-sales concern.

B Natural Language Processing

To classify updates and define markets using text data, I must first clean and transform the data

to use in the relevant machine learning algorithms. Essentially, these unstructured text documents

must be converted to vectors, to which standard mathematical operations can be performed. This

section outlines my approach for doing this. In practice, I use a combination of the spaCy and

Scikit-learn libraries to implement the text processing work outlined below (Honnibal and Montani,

32Quan and Williams (2015) develop an alternative method for handling zero-shares, but it requires cross-market
products. As there is no distinction between local app markets and a national app market, applying their method is
not possible in this case.

56

2017; Pedregosa et al., 2011).

Figure 12: Natural Language Pro-
cessing Flow Chart

“Hark the sound
of Tar Heel voices

Ringing clear and True
Singing Carolina’s praises

Shouting N.C.U.”

“hark the sound of tar
heel voices ringing clear

and true singing carolina’s
praises shouting n.c.u.”

“hark” “the” “sound” “of”
“tar” “heel” “voices” “ring-
ing” “clear” “and” “true”
“singing” “carolina” “’s”

“praises” “shouting” “n.c.u”

“hark” “sound”
“tar” “heel” “voices”

“ringing” “clear” “true”
“singing” “car-
olina” “praises”

“shouting” “n.c.u”

“hark” “sound” “tar” “heel”
“voice” “ring” “clear”

“true” “sing” “carolina”
“praise” “shout” “n.c.u”

Vectorization
&

Machine Learning

Pre-process

Tokenize

Remove Stop Words

Lemmatize

Each text document, whether an update’s release notes

or an app’s description, is first tokenized. Tokenization is

the practice of reducing a document to a set of individ-

ual word “tokens.” I next lemmatize these tokens, which

reduces the words to their dictionary form. Finally, I re-

move all punctuation and non-letter characters (e.g., bul-

let points and emojis), a standard list of common English

“stop words,” such as “a” and “the,” as well as a list of

words related to Apple and its products, such as “iPhone”

and “iOS.” Removing these words allows me to focus my

analysis on the words that indicate the purpose of app up-

dates, rather than, for example, the frequency with which

a developer mentions Apple’s platform. Fig. 12 provides an

example of applying these steps to a short text.

Additionally, I optimally select a number of other

options, including allowing for multi-word phrases (“n-

grams”), removing words that only appear a few times

across all descriptions (such as proper nouns), and remov-

ing any words that appear in a large percentage of the de-

scriptions. The parameters for these options are chosen by

iterating over a parameter grid, and choosing the best vec-

tor of parameters by maximizing a scoring metric. Ultimately, this process produces a “bag of

words” for each description. Given the bag of words for each description, I map each document

to a vector space where each element of a vector represents a particular word or n-gram. Rather

than simply using an indicator for which words are present in a document, I use term frequency,

inverse-document frequency weighting. This weighting procedure places greater emphasis on words

that appear frequently in a document relative to the word’s overall frequency in the set of release

notes, under the assumption that such words are a more valuable signal for differentiating a par-

ticular set of release notes than words that appear frequently across all documents. The weight for

57

word i in release notes j is

weightij =
fij

max
k

fkj
× ln

(
N

ni

)
(21)

where fij is the frequency of word i in document j, N is the total number of release notes (i.e., the

total number of updates), and token i appears in ni of the release notes. This process results in a

set of sparse, high-dimensional vectors representing each release note.

C X-Means Clustering

To define markets, I use the X-means clustering algorithm, which is itself an extension of the

k-means clustering algorithm. I describe both below. The X-means clustering algorithm was

developed by Pelleg and Moore (2000).

k-Means Clustering Given a set of description vectors X = {x1, . . . , xN}, and an exogenously

determined number of clusters k, k-means clustering allocates each app description x ∈ X to one

of the k clusters, characterized by a centroid in the vector space defined by X. Broadly, xi is in

cluster j if and only if it is more similar to the x’s in j than to those in any other cluster.

More precisely, define

γij =

1, xi is in cluster j

0, otherwise

(22)

and let δj be the centroid of cluster j. Letting γ = {γij} and δ = {δj}, the k-means clustering

algoritm then solves

min
γ,δ

1

2

N∑
i=1

k∑
j=1

γij ||xi − δj ||2 (23)

Eq. (23) is solved using a recursive, two-step process. In the first step it optimally selects γ

given δ, and in the second step it optimally selects δ given the γ determined in the first step.

Specifically, the objective in each step is

58

Step 1: min
j′
||xi − δj′ ||2 ∀i (24)

Step 2:
N∑
i=1

γij(xi − δj) = 0, ∀j (25)

This two-step process is repeated until the convergence of γ and δ.

X-Means Clustering Given a minimum number of clusters, kmin, the algorithm conducts k-

means clustering on the sample, as described above. Then, for each cluster, run the k-means

algorithm with k = 2. The Bayesian Information Criterion (BIC) for the original cluster, and the

split cluster. The BIC is used to determine whether each cluster should be split, and is therefore

used to determine the new number of clusters. The process then repeats, using the new number of

clusters. This continues until convergence.

D Intensive Margin of Demand

In this appendix section I outline a simple model of intensive-margin, or use demand for apps. This

model is useful for both understanding the incentives firms face regarding the intensive margin, and

the model is used in order to simulated consumers’ lifetime expected utility from owning an app,

which is used in the estimation of the demand model. See Sections 3.2 and 5.1 for more details on

the extensive margin model and estimation procedure.

Model Each period consumers choose whether to use any of the apps they already own. That

is, consumer i, owning apps j ∈ Ji makes |Ji| independent decisions of whether to use each app or

not. Specifically, consumers earn utility wijt from using app j at time t where

wijt = Xjtβ̃ + ξ̃jt + ε̃ijt

wi0t = εi0t

(26)

and the fraction of previous purchasers who choose to use app j in period t is sintjt , which is derived

in the same way as sjt.

59

sintjt =
exp(Xjtβ̃ + ξ̃jt)

1 +
∑

k exp(Xktβ̃ + ξ̃kt)

Eq. (26) differs from Eq. (1) in three ways. First, consumers do not consider the price of the

app when making a use decision, as they have already paid that one-time cost. Second, Λjt = 0,

reflecting the fact that period-specific use decisions are independent across periods.33

Finally, a primary concern developers have about selling entirely digital goods is that consumers

may not be well-informed about the quality of apps prior to purchase.34 In light of this, I do not

restrict the intensive-margin preference parameter β̃ and unobserved product quality ξ̃ to be equal

to their extensive-margin counterparts. Furthermore, I assume that any difference in (β̃, ξ̃) is

unknown to the consumer prior to making a purchase, which fits with the notion that apps may in

some ways be experience goods à la Nelson (1970).

Derivation of Lifetime Expected Utility (Λjt) Consumers anticipate that apps will be up-

dated in future periods, and thus consider the future utility of using the product when making their

purchase decision. Specifically, consumers have expectations over future updates, and over future

consumer-app match values εijt, which are relevant to the consumer’s period-specific, intensive

margin, use decision. Thus, conditional on the developer’s updating choices, the expected value of

owning previously purchased app j in period τ , when the consumer can either choose to use app j

or not is the expected utility of Eq. (26). Since the error in the intensive margin demand model is

assumed to be i.i.d. Extreme Value Type 1, this expectation, is defined by the standard “logsum”

formula for the double exponential (Anderson, de Palma, and Thisse, 1992), which is

Ewijτ = ln
(

1 + eXjτβ+ξjτ
)

(27)

Therefore, the expected future, discounted value of owning app j, Λjt is the discounted sum of

33It may be the case that in some app markets period t use affects the utility received in periods τ > t. This is
not considered here due in to data limitations. Games, the primary category where one might imagine this matters
is not considered in this paper.

34E.g., “The limited information a prospective customer has prior to a purchase is one of the problems with
Apple’s App Store. People are supposed to fork over money for apps, but only get to see five screenshots and a few
paragraphs of text before making a decision — that just doesn’t cut it.” (Hoctor, 2013)

60

Eq. (27), with expectations over the developer of app j’s future updating decisions. Namely,

Λijt = E

[∞∑
τ=t+1

δτ−tEwijt

]

= E

[∞∑
τ=t+1

δτ−t ln
(

1 + eXjτβ+ξjτ
)] (28)

where δ is the discount factor. The symmetry of the model implies, Λijt = Λjt ∀i.

Note that the formation of the expected future value Λ is entirely a function of consumers’

extensive margin preferences β and the extensive-margin unobserved product quality ξ. While the

values of β and ξ may differ between the two margins, consumers are only able to form expectations

over what they know prior to purchasing a given app. Since the intensive-margin values, if they

differ at all, are only learned after the point-of-sale, Λ cannot account for these differences.

Calculating Λj,t I calculate Λj,t using forward simulation. Broadly, the process of calculating

Λj,t is similar to what is used to estimate the supply model. For each candidate parameter in

the demand estimation I do the following: For each observation, simulate forward 50 periods,

calculating Ewijτ for each simulated period τ . Then, I take the discounted sum of the 50 Ewijτ

values. I repeat this process 50 times, and average across all of those simulations to get Λjt. In light

of the potentially high computational cost of these simulations, I calculate and save each simulated

path for each observation outside of the estimation procedure. Then, for each candidate parameter

in the estimation procedure I calculate Ewijτ for each period of each path, take the discounted sum

for each path, and then average across all of the simulations.

Calculating Firm Revenue Given wijt it is possible to define the number of “active users” of

app j, AUjt. Specifically,

AUjt = sextjt Mmτ + sintjt

t−1∑
τ=t0

sextjτ Mmτ (29)

That is, AUj,t is the number of consumers who purchased the product in period t, plus the number

of customers who have previously purchased the app and have chosen to use it in period t.

Given this measurement of an app’s intensive-margin market size, one can imagine models

similar to the intensive use model that characterize the share of an app’s active users that purchase

61

an IAP (sIAPj,t) and that purchase, or make a continued payment for a subscription (ssubj,t), as

appropriate depending on the app’s monetization strategy. In most cases it would be reasonable to

assume all active users who use the app in period t view any ads presented in the app, so sadsj,t = sintj,t .

In the interest of brevity, and since such models do not enter into the estimation approach used in

this paper, I omit a more precise discussion of these models.

Given this, Rj is defined as

Rj(Skjt) =

Sales Revenue︷ ︸︸ ︷
pRetailj sextj,t Mmt +

Use Revenue︷ ︸︸ ︷(∑
l

(pIAPj,l sIAPj,l,t) + pAdsj sadsj,t + psubj ssubj,t

)
AUj,t

(30)

where, as noted above, sxjt is the share making a purchase of x ∈ {IAP, Sub}, as appropriate, and

AUj,t is the set of active users for app j in period t. l indexes the number of IAPs offered by the

app, which in many cases is greater than one. Note that marginal costs are assumed to be 0, as

discussed in Section 2. Because I cannot observe intensive-margin behavior, I use a reduced form

approximation of revenue when estimating the supply model (see Section 5.2.

62

	Introduction
	The App Store
	Apple's iOS Platform
	Existing Research on Smartphone Applications

	A Structural Model of the App Store
	Timing
	A Model of App Demand
	A Model of App Updating

	Data
	Description of Data
	Estimating App Sales
	Classifying Updates
	Classifying Updates by Version Numbers
	Classifying Updates by Release Notes

	Defining Markets
	Descriptive Evidence

	Estimating the Structural Model
	Demand Estimation
	Fixed Costs Estimation

	Estimation Results
	Demand Results
	Fixed Cost Results
	Discussion

	Counterfactual Analysis
	Conclusion
	Appendices
	Sample Restrictions
	Companion versus Product Apps
	Accounting for Abandoned Apps

	Natural Language Processing
	X-Means Clustering
	Intensive Margin of Demand

